IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v588y2022ics0378437121008086.html
   My bibliography  Save this article

An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks

Author

Listed:
  • Wang, Ying
  • Zheng, Yunan
  • Shi, Xuelei
  • Liu, Yiguang

Abstract

Influence maximization is of great significance in complex networks, and many methods have been proposed to solve it. However, they are usually time-consuming or cannot deal with the overlap of spreading. To get over the flaws, an effective heuristic clustering algorithm is proposed in this paper: (1) nodes that have been assigned to clusters are excluded from the network structure to guarantee they do not participate in subsequent clustering. (2) the K-shell (ks) and Neighborhood Coreness (NC) value of nodes in the remaining network are recalculated, which ensures the node influence can be adjusted during the clustering process. (3) a hub node and a routing node are selected for each cluster to jointly determine the initial spreader, which balances the local and global influence. Due to the above contributions, the proposed method preferably guarantees the influence of initial spreaders and the dispersity between them. A series of experiments based on Susceptible–Infected–Recovered (SIR) stochastic model confirm that the proposed method has favorable performance under different initial constraints against known methods, including VoteRank, HC, GCC, HGD, and DLS-AHC.

Suggested Citation

  • Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  • Handle: RePEc:eee:phsmap:v:588:y:2022:i:c:s0378437121008086
    DOI: 10.1016/j.physa.2021.126535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121008086
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Jinfang & Dai, Jinying & Wang, Bin & Duan, Guihua & Long, Jun & Zhang, Junkai & Guan, Kerong & Hu, Sheng & Chen, Long & Guan, Wanghao, 2020. "Identifying influential nodes in complex networks based on global and local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Zhang, Xiaohong & Li, Zhiying & Qian, Kai & Ren, Jianji & Luo, Junwei, 2020. "Influential node identification in a constrained greedy way," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    3. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Malang, Kanokwan & Wang, Shuliang & Phaphuangwittayakul, Aniwat & Lv, Yuanyuan & Yuan, Hanning & Zhang, Xiuzhen, 2020. "Identifying influential nodes of global terrorism network: A comparison for skeleton network extraction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    6. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Yuanzhi Yang & Lei Yu & Xing Wang & Siyi Chen & You Chen & Yipeng Zhou, 2020. "A novel method to identify influential nodes in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-14, February.
    8. Liu, Huan-Li & Ma, Chuang & Xiang, Bing-Bing & Tang, Ming & Zhang, Hai-Feng, 2018. "Identifying multiple influential spreaders based on generalized closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2237-2248.
    9. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    11. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    12. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    13. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    14. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    15. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    16. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    17. Al-Azim, Nouran Ayman R. Abd & Gharib, Tarek F. & Afify, Yasmine & Hamdy, Mohamed, 2020. "Influence propagation: Interest groups and node ranking models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    4. Hajarathaiah, Koduru & Enduri, Murali Krishna & Anamalamudi, Satish, 2022. "Efficient algorithm for finding the influential nodes using local relative change of average shortest path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    5. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Wang, Longjian & Zheng, Shaoya & Wang, Yonggang & Wang, Longfei, 2021. "Identification of critical nodes in multimodal transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    9. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    11. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    14. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    16. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    17. Wang, Jing & Ma, Xiao-Jing & Xiang, Bing-Bing & Bao, Zhong-Kui & Zhang, Hai-Feng, 2022. "Maximizing influence in social networks by distinguishing the roles of seeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    18. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    19. Liu, Jia-Bao & Zheng, Ya-Qian & Lee, Chien-Chiang, 2024. "Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory," Applied Energy, Elsevier, vol. 357(C).
    20. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:588:y:2022:i:c:s0378437121008086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.