IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v603y2022ics0378437122005222.html
   My bibliography  Save this article

CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy

Author

Listed:
  • Dong, Chen
  • Xu, Guiqiong
  • Meng, Lei
  • Yang, Pingle

Abstract

How to evaluate the importance of nodes and identify influential nodes in complex networks is a very significant research in the field of network science. Most of existing algorithms neglect the relationship between a node and its neighbors to evaluate the importance of nodes in networks. In this work, we first define nodes communication probability sequence by making use of the length and number of shortest paths between node pairs. Then the traditional binary adjacency matrix is converted into correlation matrix through relative entropy. Based on information Communication Probability and Relative entropy (CPR), an improved Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), called CPR-TOPSIS, is presented for identifying influential nodes in complex networks from the view of global, local and location information dimensions. The proposed algorithm has been compared with eight state-of-the-art algorithms on several real-world networks to verify the performance. Experimental results show that CPR-TOPSIS has better performance in terms of monotonicity, resolution, ranking accuracy, imprecision function and top-10 nodes.

Suggested Citation

  • Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  • Handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005222
    DOI: 10.1016/j.physa.2022.127797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005222
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Yudong & Liu, Sanyang & Bai, Yiguang, 2021. "A probability-driven structure-aware algorithm for influence maximization under independent cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Dai, Zhen & Li, Ping & Chen, Yan & Zhang, Kai & Zhang, Jie, 2019. "Influential node ranking via randomized spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    4. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    5. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    6. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    7. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    8. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    9. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    11. Mo, Hongming & Deng, Yong, 2019. "Identifying node importance based on evidence theory in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    12. Wei, Bo & Deng, Yong, 2019. "A cluster-growing dimension of complex networks: From the view of node closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 80-87.
    13. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    14. Yang, Yuanzhi & Yu, Lei & Wang, Xing & Zhou, Zhongliang & Chen, You & Kou, Tian, 2019. "A novel method to evaluate node importance in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    15. Zhao, Zi-Juan & Guo, Qiang & Yu, Kai & Liu, Jian-Guo, 2020. "Identifying influential nodes for the networks with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Yang, Xu-Hua & Xiong, Zhen & Ma, Fangnan & Chen, Xiaoze & Ruan, Zhongyuan & Jiang, Peng & Xu, Xinli, 2021. "Identifying influential spreaders in complex networks based on network embedding and node local centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    17. Lai, Yujie & Hu, Yibo, 2021. "A study of systemic risk of global stock markets under COVID-19 based on complex financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. Lv, Zhiwei & Zhao, Nan & Xiong, Fei & Chen, Nan, 2019. "A novel measure of identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 488-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guiqiong Xu & Chen Dong & Lei Meng, 2022. "Research on the Collaborative Innovation Relationship of Artificial Intelligence Technology in Yangtze River Delta of China: A Complex Network Perspective," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    4. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    5. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    7. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    8. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Kumar, Sanjay & Panda, B.S., 2020. "Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    10. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    11. Fu, Xin & Qiang, Yongjie & Liu, Xuxu & Jiang, Ying & Cui, Zhiwei & Zhang, Deyu & Wang, Jianwei, 2022. "Will multi-industry supply chains' resilience under the impact of COVID-19 pandemic be different? A perspective from China's highway freight transport," Transport Policy, Elsevier, vol. 118(C), pages 165-178.
    12. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    13. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    14. Wang, Jing & Ma, Xiao-Jing & Xiang, Bing-Bing & Bao, Zhong-Kui & Zhang, Hai-Feng, 2022. "Maximizing influence in social networks by distinguishing the roles of seeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    16. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    17. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    18. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    19. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    20. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.