IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp320-328.html
   My bibliography  Save this article

Identifying the main paths of information diffusion in online social networks

Author

Listed:
  • Zhu, Hengmin
  • Yin, Xicheng
  • Ma, Jing
  • Hu, Wei

Abstract

Recently, an increasing number of researches on relationship strength show that there are some socially active links in online social networks. Furthermore, it is likely that there exist main paths which play the most significant role in the process of information diffusion. Although much of previous work has focused on the pathway of a specific event, there are hardly any scholars that have extracted the main paths. To identify the main paths of online social networks, we proposed a method which measures the weights of links based on historical interaction records. The influence of node based on forwarding amount is quantified and top-ranked nodes are selected as the influential users. The path importance is evaluated by calculating the probability that a message would spread via this path. We applied our method to a real-world network and found interesting insights. Each influential user can access another one via a short main path and the distribution of main paths shows significant community effect.

Suggested Citation

  • Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:320-328
    DOI: 10.1016/j.physa.2016.01.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711600087X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    2. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    3. Liu, Jian-Guo & Ren, Zhuo-Ming & Guo, Qiang, 2013. "Ranking the spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4154-4159.
    4. Qian-Jin Peng & Ming Zhao & Hai-Feng Zhang, 2013. "Influence Of Inter-Community Link Strength On Community Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(09), pages 1-7.
    5. Louis Y. Y. Lu & John S. Liu, 2013. "An innovative approach to identify the knowledge diffusion path: the case of resource-based theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 225-246, January.
    6. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    7. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    8. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    9. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    10. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoyang & He, Daobing & Liu, Chao, 2018. "Modeling information dissemination and evolution in time-varying online social network based on thermal diffusion motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 456-476.
    2. Li, Kai & Zhu, Hengmin & Zhang, Yihan & Wei, Jing, 2022. "Dynamic evaluation method on dissemination capability of microblog users based on topic segmentation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    2. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    3. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    5. Liu, Yang & Wei, Bo & Du, Yuxian & Xiao, Fuyuan & Deng, Yong, 2016. "Identifying influential spreaders by weight degree centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 1-7.
    6. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    7. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.
    8. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    9. Liebig, Jessica & Rao, Asha, 2016. "Predicting item popularity: Analysing local clustering behaviour of users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 523-531.
    10. Liu, Jie & Li, Yunpeng & Ruan, Zichan & Fu, Guangyuan & Chen, Xiaowu & Sadiq, Rehan & Deng, Yong, 2015. "A new method to construct co-author networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 29-39.
    11. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    12. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    13. Hansin Bilgili & Jonathan L. Johnson & Tsvetomira V. Bilgili & Alan E. Ellstrand, 2022. "Research on social relationships and processes governing the behaviors of members of the corporate elite: a review and bibliometric analysis," Review of Managerial Science, Springer, vol. 16(8), pages 2285-2339, November.
    14. Salavati, Chiman & Abdollahpouri, Alireza & Manbari, Zhaleh, 2018. "BridgeRank: A novel fast centrality measure based on local structure of the network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 635-653.
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    16. Lu, Louis Y.Y. & Hsieh, Chih-Hung & Liu, John S., 2016. "Development trajectory and research themes of foresight," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 347-356.
    17. Singh, Priti & Chakraborty, Abhishek & Manoj, B.S., 2017. "Link Influence Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 701-713.
    18. Lu, Louis Y.Y. & Liu, John S., 2016. "A novel approach to identify the major research themes and development trajectory: The case of patenting research," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 71-82.
    19. Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
    20. Chuang, Thomas C. & Liu, John S. & Lu, Louis Y.Y. & Lee, Yachi, 2014. "The main paths of medical tourism: From transplantation to beautification," Tourism Management, Elsevier, vol. 45(C), pages 49-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:320-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.