IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123006301.html
   My bibliography  Save this article

Ranking academic institutions by means of institution–publication networks

Author

Listed:
  • Cao, Huiying
  • Gao, Chao
  • Wang, Zhen

Abstract

Ranking academic institutions is a crucial aspect of scientometric research and has been an attractive topic. However, existing methods for measuring the reputation of institutions do not adequately consider the interconnected relationship between multiple scientific agents, such as papers and institutions, which limits the robustness and accuracy of the evaluation results. To address this issue and accurately identify influential academic institutions, we propose a novel heterogeneous ranking method by means of interconnected institution–publication networks. Firstly, we construct an institution–publication network consisting of an institution layer and a paper layer to capture the interconnected relationship between institutions and papers. And then, we propose a novel ranking method based on random walks on top of the institution–publication network. Each layer has its own random jump probability, and there is an additional interlayer jump probability to depict the interdependence between collaboration and citation. Finally, we conduct extensive experiments on large-scale empirical data from American Physical Society journals. The results demonstrate that the proposed method, HRank, performs well in identifying influential institutions, predicting the increment of citations, and improving robustness against malicious manipulation.

Suggested Citation

  • Cao, Huiying & Gao, Chao & Wang, Zhen, 2023. "Ranking academic institutions by means of institution–publication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123006301
    DOI: 10.1016/j.physa.2023.129075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123006301
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Panpan & Wang, Tiandong & Yan, Jun, 2022. "PageRank centrality and algorithms for weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    3. Angelou, Konstantinos & Maragakis, Michael & Argyrakis, Panos, 2019. "A structural analysis of the patent citation network by the k-shell decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 476-483.
    4. Abramo, Giovanni & D’Angelo, Ciriaco Andrea, 2015. "Ranking research institutions by the number of highly-cited articles per scientist," Journal of Informetrics, Elsevier, vol. 9(4), pages 915-923.
    5. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    6. Yuanzhi Yang & Lei Yu & Xing Wang & Siyi Chen & You Chen & Yipeng Zhou, 2020. "A novel method to identify influential nodes in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-14, February.
    7. Jevin D. West & Michael C. Jensen & Ralph J. Dandrea & Gregory J. Gordon & Carl T. Bergstrom, 2013. "Author‐level Eigenfactor metrics: Evaluating the influence of authors, institutions, and countries within the social science research network community," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(4), pages 787-801, April.
    8. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    9. Mariani, Manuel Sebastian & Medo, Matúš & Zhang, Yi-Cheng, 2016. "Identification of milestone papers through time-balanced network centrality," Journal of Informetrics, Elsevier, vol. 10(4), pages 1207-1223.
    10. Liu, Xiao Fan & Chen, Hou-Jin & Sun, Wu-Jiu, 2021. "Adaptive topological coevolution of interdependent networks: Scientific collaboration-citation networks as an example," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    11. Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    12. Juan A Crespo & Ignacio Ortuño-Ortín & Javier Ruiz-Castillo, 2012. "The Citation Merit of Scientific Publications," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    13. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    14. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    15. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    16. Themis Lazaridis, 2010. "Ranking university departments using the mean h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 211-216, February.
    17. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    18. Massucci, Francesco Alessandro & Docampo, Domingo, 2019. "Measuring the academic reputation through citation networks via PageRank," Journal of Informetrics, Elsevier, vol. 13(1), pages 185-201.
    19. Ying Ding & Erjia Yan & Arthur Frazho & James Caverlee, 2009. "PageRank for ranking authors in co‐citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2229-2243, November.
    20. Hu, Yunchao & Lu, Guibin & Gao, Wenyu, 2022. "A study on China’s systemically important financial institutions based on multi-time scale causality networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    21. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    22. Zhao, Star X. & Tan, Alice M. & Yu, Shuang & Xu, Xin, 2018. "Analyzing the research funding in physics: The perspective of production and collaboration at institution level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 662-674.
    23. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P‐Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    24. Xie, Zonglin & Xie, Zheng & Li, Jianping & Yang, Qian, 2018. "Exploring the influence of social activity on scientific career," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 189-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    2. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    3. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    4. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    5. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2018. "Author ranking evaluation at scale," Journal of Informetrics, Elsevier, vol. 12(3), pages 679-702.
    6. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.
    7. Amodio, Pierluigi & Brugnano, Luigi & Scarselli, Filippo, 2021. "Implementation of the PaperRank and AuthorRank indices in the Scopus database," Journal of Informetrics, Elsevier, vol. 15(4).
    8. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    9. Zhang, Ronda J. & Ye, Fred Y., 2020. "Measuring similarity for clarifying layer difference in multiplex ad hoc duplex information networks," Journal of Informetrics, Elsevier, vol. 14(1).
    10. Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    11. Fenghua Wang & Ying Fan & An Zeng & Zengru Di, 2019. "Can we predict ESI highly cited publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 109-125, January.
    12. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    13. Wang, Ruby W. & Wei, Shelia X. & Ye, Fred Y., 2021. "Extracting a core structure from heterogeneous information network using h-subnet and meta-path strength," Journal of Informetrics, Elsevier, vol. 15(3).
    14. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    15. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    16. Eleni Fragkiadaki & Georgios Evangelidis, 2014. "Review of the indirect citations paradigm: theory and practice of the assessment of papers, authors and journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 261-288, May.
    17. Alexander Kuchansky & Andrii Biloshchytskyi & Yurii Andrashko & Svitlana Biloshchytska & Adil Faizullin, 2022. "The Scientific Productivity of Collective Subjects Based on the Time-Weighted PageRank Method with Citation Intensity," Publications, MDPI, vol. 10(4), pages 1-17, October.
    18. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    19. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    20. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123006301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.