Identifying node importance based on evidence theory in complex networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.121538
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
- Chao Sun & Shiying Li & Yong Deng, 2020. "Determining Weights in Multi-Criteria Decision Making Based on Negation of Probability Distribution under Uncertain Environment," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
- Chen, Sai & Ding, Yueting & Zhang, Yanfang & Zhang, Ming & Nie, Rui, 2022. "Study on the robustness of China's oil import network," Energy, Elsevier, vol. 239(PB).
- Yige Xue & Yong Deng, 2020. "Refined Expected Value Decision Rules under Orthopair Fuzzy Environment," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
- Xiao, Feng & Li, Jin & Wei, Bo, 2022. "Cascading failure analysis and critical node identification in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Zhong, Xingju & Liu, Renjing, 2024. "Identifying critical nodes in interdependent networks by GA-XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
More about this item
Keywords
Complex networks; Important nodes; Evidence theory; Multi-evidence centrality; Comprehensive measure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:529:y:2019:i:c:s0378437119309021. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.