IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236519.html
   My bibliography  Save this article

A computational model of stem cell molecular mechanism to maintain tissue homeostasis

Author

Listed:
  • Najme Khorasani
  • Mehdi Sadeghi
  • Abbas Nowzari-Dalini

Abstract

Stem cells, with their capacity to self-renew and to differentiate to more specialized cell types, play a key role to maintain homeostasis in adult tissues. To investigate how, in the dynamic stochastic environment of a tissue, non-genetic diversity and the precise balance between proliferation and differentiation are achieved, it is necessary to understand the molecular mechanisms of the stem cells in decision making process. By focusing on the impact of stochasticity, we proposed a computational model describing the regulatory circuitry as a tri-stable dynamical system to reveal the mechanism which orchestrate this balance. Our model explains how the distribution of noise in genes, linked to the cell regulatory networks, affects cell decision-making to maintain homeostatic state. The noise effect on tissue homeostasis is achieved by regulating the probability of differentiation and self-renewal through symmetric and/or asymmetric cell divisions. Our model reveals, when mutations due to the replication of DNA in stem cell division, are inevitable, how mutations contribute to either aging gradually or the development of cancer in a short period of time. Furthermore, our model sheds some light on the impact of more complex regulatory networks on the system robustness against perturbations.

Suggested Citation

  • Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0236519
    DOI: 10.1371/journal.pone.0236519
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236519
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236519&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    2. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    3. John R. S. Newman & Sina Ghaemmaghami & Jan Ihmels & David K. Breslow & Matthew Noble & Joseph L. DeRisi & Jonathan S. Weissman, 2006. "Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise," Nature, Nature, vol. 441(7095), pages 840-846, June.
    4. Yuh Nung Jan & Lily Yeh Jan, 1998. "Asymmetric cell division," Nature, Nature, vol. 392(6678), pages 775-778, April.
    5. Ian Chambers & Jose Silva & Douglas Colby & Jennifer Nichols & Bianca Nijmeijer & Morag Robertson & Jan Vrana & Ken Jones & Lars Grotewold & Austin Smith, 2007. "Nanog safeguards pluripotency and mediates germline development," Nature, Nature, vol. 450(7173), pages 1230-1234, December.
    6. Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004. "Multistability in the lactose utilization network of Escherichia coli," Nature, Nature, vol. 427(6976), pages 737-740, February.
    7. Murat Acar & Attila Becskei & Alexander van Oudenaarden, 2005. "Enhancement of cellular memory by reducing stochastic transitions," Nature, Nature, vol. 435(7039), pages 228-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    2. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    3. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    4. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    5. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    6. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    7. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    8. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    9. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    10. Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
    11. Xu, Yong & Zhu, Ya-nan & Shen, Jianwei & Su, Jianbin, 2014. "Switch dynamics for stochastic model of genetic toggle switch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 461-466.
    12. Margaret J Tse & Brian K Chu & Cameron P Gallivan & Elizabeth L Read, 2018. "Rare-event sampling of epigenetic landscapes and phenotype transitions," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-28, August.
    13. Liberman, Uri & Behar, Hilla & Feldman, Marcus W., 2016. "Evolution of reduced mutation under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 112(C), pages 52-59.
    14. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    15. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Rohith Palli & Mukta G Palshikar & Juilee Thakar, 2019. "Executable pathway analysis using ensemble discrete-state modeling for large-scale data," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-21, September.
    17. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    18. Cencetti, Giulia & Battiston, Federico & Carletti, Timoteo & Fanelli, Duccio, 2020. "Generalized patterns from local and non local reactions," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    19. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    20. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.