IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2340-2356.html
   My bibliography  Save this article

The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos

Author

Listed:
  • Wu, Wenjuan
  • Chen, Zengqiang
  • Yuan, Zhuzhi

Abstract

In this paper, a novel four-dimensional autonomous system in which each equation contains a quadratic cross-product term is constructed. It exhibits extremely rich dynamical behaviors, including 3-tori (triple tori), 2-tori (quasi-periodic), limit cycles (periodic), chaotic and hyperchaotic attractors. In particular, we observe 3-torus phenomena, which have been rarely reported in four-dimensional autonomous systems in previous work. With the parameter r varying in quite a wide range, the evolution process of the system begins from 3-tori, and after going through a series of periodic, quasi-periodic and chaotic attractors in so many different shapes coming into being alternately, it evolves into hyperchaos, finally it degenerates to periodic attractor. Moreover, when the system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of the hyperchaotic systems already reported, especially the largest Lyapunov exponents. We also observe a chaotic attractor of a very special shape. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation diagram and phase portraits.

Suggested Citation

  • Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2340-2356
    DOI: 10.1016/j.chaos.2007.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907005140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Tiegang & Chen, Zengqiang & Yuan, Zhuzhi & Yu, Dongchuan, 2007. "Adaptive synchronization of a new hyperchaotic system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 922-928.
    2. Qi, Guoyuan & Chen, Guanrong & Zhang, Yuhui, 2008. "On a new asymmetric chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 409-423.
    3. Chen, Aimin & Lu, Junan & Lü, Jinhu & Yu, Simin, 2006. "Generating hyperchaotic Lü attractor via state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 103-110.
    4. Nana Nbendjo, B.R. & Woafo, P., 2007. "Active control with delay of horseshoes chaos using piezoelectric absorber on a buckled beam under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 73-79.
    5. Park, Ju H., 2006. "Chaos synchronization between two different chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 549-554.
    6. Qi, Guoyuan & Du, Shengzhi & Chen, Guanrong & Chen, Zengqiang & yuan, Zhuzhi, 2005. "On a four-dimensional chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1671-1682.
    7. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    8. Wang, Guangyi & Zhang, Xun & Zheng, Yan & Li, Yuxia, 2006. "A new modified hyperchaotic Lü system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 260-272.
    9. Wu, Cunli & Fang, Tong & Rong, Haiwu, 2007. "Chaos synchronization of two stochastic Duffing oscillators by feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1201-1207.
    10. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    2. Xin, Baogui & Ma, Junhai & Gao, Qin, 2009. "The complexity of an investment competition dynamical model with imperfect information in a security market," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2425-2438.
    3. Baogui Xin & Tong Chen & Junhai Ma, 2010. "Neimark-Sacker Bifurcation in a Discrete-Time Financial System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2010, pages 1-12, September.
    4. Du Mingjing & Yulan Wang, 2019. "Some Novel Complex Dynamic Behaviors of a Class of Four-Dimensional Chaotic or Hyperchaotic Systems Based on a Meshless Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    5. Dong, Chengwei & Liu, Huihui & Jie, Qi & Li, Hantao, 2022. "Topological classification of periodic orbits in the generalized Lorenz-type system with diverse symbolic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    2. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Zhou, Xiaobing & Wu, Yue & Li, Yi & Xue, Hongquan, 2009. "Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2477-2483.
    4. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    5. Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
    6. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    7. Ma, Junhai & Cui, Yaqiang & Liulixia,, 2009. "A study on the complexity of a business cycle model with great excitements in non-resonant condition," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2258-2267.
    8. Yu, Yongguang & Li, Han-Xiong, 2009. "Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2330-2337.
    9. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    10. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    11. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    12. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    13. Barrio, Roberto, 2005. "Sensitivity tools vs. Poincaré sections," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 711-726.
    14. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    15. Hamdi, Mustapha & Belhaq, Mohamed, 2009. "Self-excited vibration control for axially fast excited beam by a time delay state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 521-532.
    16. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    17. Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
    18. Lijuan Chen & Mingchu Yu & Jinnan Luo & Jinpeng Mi & Kaibo Shi & Song Tang, 2024. "Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    19. Gao, Tiegang & Gu, Qiaolun & Emmanuel, Sabu, 2009. "A novel image authentication scheme based on hyper-chaotic cell neural network," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 548-553.
    20. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2340-2356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.