Author
Listed:
- Ertugrul M. Ozbudak
(Massachusetts Institute of Technology)
- Mukund Thattai
(Massachusetts Institute of Technology)
- Han N. Lim
(Massachusetts Institute of Technology)
- Boris I. Shraiman
(Rutgers University)
- Alexander van Oudenaarden
(Massachusetts Institute of Technology)
Abstract
Multistability, the capacity to achieve multiple internal states in response to a single set of external inputs, is the defining characteristic of a switch. Biological switches are essential for the determination of cell fate in multicellular organisms1, the regulation of cell-cycle oscillations during mitosis2,3 and the maintenance of epigenetic traits in microbes4. The multistability of several natural1,2,3,4,5,6 and synthetic7,8,9 systems has been attributed to positive feedback loops in their regulatory networks10. However, feedback alone does not guarantee multistability. The phase diagram of a multistable system, a concise description of internal states as key parameters are varied, reveals the conditions required to produce a functional switch11,12. Here we present the phase diagram of the bistable lactose utilization network of Escherichia coli13. We use this phase diagram, coupled with a mathematical model of the network, to quantitatively investigate processes such as sugar uptake and transcriptional regulation in vivo. We then show how the hysteretic response of the wild-type system can be converted to an ultrasensitive graded response14,15. The phase diagram thus serves as a sensitive probe of molecular interactions and as a powerful tool for rational network design.
Suggested Citation
Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004.
"Multistability in the lactose utilization network of Escherichia coli,"
Nature, Nature, vol. 427(6976), pages 737-740, February.
Handle:
RePEc:nat:nature:v:427:y:2004:i:6976:d:10.1038_nature02298
DOI: 10.1038/nature02298
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6976:d:10.1038_nature02298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.