IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0086591.html
   My bibliography  Save this article

Regression-Based Ranking of Pathogen Strains with Respect to Their Contribution to Natural Epidemics

Author

Listed:
  • Samuel Soubeyrand
  • Charlotte Tollenaere
  • Emilie Haon-Lasportes
  • Anna-Liisa Laine

Abstract

Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.

Suggested Citation

  • Samuel Soubeyrand & Charlotte Tollenaere & Emilie Haon-Lasportes & Anna-Liisa Laine, 2014. "Regression-Based Ranking of Pathogen Strains with Respect to Their Contribution to Natural Epidemics," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
  • Handle: RePEc:plo:pone00:0086591
    DOI: 10.1371/journal.pone.0086591
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086591
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086591&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0086591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    2. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    3. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    4. Weijia Xing & Gilles Hejblum & Gabriel M Leung & Alain-Jacques Valleron, 2010. "Anatomy of the Epidemiological Literature on the 2003 SARS Outbreaks in Hong Kong and Toronto: A Time-Stratified Review," PLOS Medicine, Public Library of Science, vol. 7(5), pages 1-11, May.
    5. Deqiao Tian & Tao Zheng, 2015. "Emerging infectious disease: trends in the literature on SARS and H7N9 influenza," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 485-495, October.
    6. Li, Sen & Vanwambeke, Sophie O. & Licoppe, Alain M. & Speybroeck, Niko, 2014. "Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus: A scenario analysis," Ecological Modelling, Elsevier, vol. 276(C), pages 1-13.
    7. Vinyas Harish & Felipe J. Colón-González & Filipe R. R. Moreira & Rory Gibb & Moritz U. G. Kraemer & Megan Davis & Robert C. Reiner & David M. Pigott & T. Alex Perkins & Daniel J. Weiss & Isaac I. Bog, 2024. "Human movement and environmental barriers shape the emergence of dengue," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    9. Shujuan Li & Lingli Zhu & Lidan Zhang & Guoyan Zhang & Hongyan Ren & Liang Lu, 2023. "Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    10. Franco M Neri & Alex R Cook & Gavin J Gibson & Tim R Gottwald & Christopher A Gilligan, 2014. "Bayesian Analysis for Inference of an Emerging Epidemic: Citrus Canker in Urban Landscapes," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    11. Adetayo Olaniyi Adeniran & Samuel Oluwaseyi Olorunfemi & Feyisola Olajire Akinsehinwa & Taye Mohammed Abdullahi, 2021. "Nexus between urban mobility and the transmission of infectious diseases: evidence from empirical review," Post-Print hal-03583997, HAL.
    12. Nuur Hafizah Md Iderus & Sarbhan Singh Lakha Singh & Sumarni Mohd Ghazali & Cheong Yoon Ling & Tan Cia Vei & Ahmed Syahmi Syafiq Md Zamri & Nadhar Ahmad Jaafar & Qistina Ruslan & Nur Huda Ahmad Jaghfa, 2022. "Correlation between Population Density and COVID-19 Cases during the Third Wave in Malaysia: Effect of the Delta Variant," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    13. Xiaotong Wen & Feiyu Chen & Yixiang Lin & Hui Zhu & Fang Yuan & Duyi Kuang & Zhihui Jia & Zhaokang Yuan, 2020. "Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    14. Rita M Zorzenon dos Santos & Ana Amador & Wayner V de Souza & Maria Fatima P M de Albuquerque & Silvina Ponce Dawson & Antonio Ruffino-Netto & Carlos R Zárate-Bladés & Celio L Silva, 2010. "A Dynamic Analysis of Tuberculosis Dissemination to Improve Control and Surveillance," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    15. Deqiao Tian & Yunzhou Yu & Yumin Wang & Tao Zheng, 2012. "Comparison of trends in the quantity and variety of Science Citation Index (SCI) literature on human pathogens between China and the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 1019-1027, December.
    16. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà, Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    18. Hui-Yi Yeh & Kou-Huang Chen & Kow-Tong Chen, 2018. "Environmental Determinants of Infectious Disease Transmission: A Focus on One Health Concept," IJERPH, MDPI, vol. 15(6), pages 1-3, June.
    19. Nicodemo, Catia & Barzin, Samira & Lasserson, Daniel S. & Moscone, Francesco & Redding, Stuart & Shaikh, Mujaheed & Cavalli, Nicolò, 2020. "Measuring Geographical Disparities in England at the Time of COVID-19: Results Using a Composite Indicator of Population Vulnerability," IZA Discussion Papers 13757, Institute of Labor Economics (IZA).
    20. Wolfgang Brozek & Christof Falkenberg, 2021. "Industrial Animal Farming and Zoonotic Risk: COVID-19 as a Gateway to Sustainable Change? A Scoping Study," Sustainability, MDPI, vol. 13(16), pages 1-30, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0086591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.