IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v319y2003icp245-252.html
   My bibliography  Save this article

Anomalous diffusion, nonlinear fractional Fokker–Planck equation and solutions

Author

Listed:
  • Lenzi, E.K.
  • Malacarne, L.C.
  • Mendes, R.S.
  • Pedron, I.T.

Abstract

We obtain new exact classes of solutions for the nonlinear fractional Fokker–Planck-like equation ∂tρ=∂x{D(x)∂μ−1xρν−F(x)ρ} by considering a diffusion coefficient D=D|x|−θ(θ∈R and D>0) and a drift force F=−k1x+k̄γx|x|γ−1(k1,k̄γ,γ∈R). Connection with nonextensive statistical mechanics based on Tsallis entropy is also discussed.

Suggested Citation

  • Lenzi, E.K. & Malacarne, L.C. & Mendes, R.S. & Pedron, I.T., 2003. "Anomalous diffusion, nonlinear fractional Fokker–Planck equation and solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 245-252.
  • Handle: RePEc:eee:phsmap:v:319:y:2003:i:c:p:245-252
    DOI: 10.1016/S0378-4371(02)01495-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102014954
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01495-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    2. Hashemi, M.S., 2015. "Group analysis and exact solutions of the time fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 141-149.
    3. Kalogeropoulos, Nikolaos, 2020. "Toward a relative q-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Richard L. Magin & Ervin K. Lenzi, 2021. "Slices of the Anomalous Phase Cube Depict Regions of Sub- and Super-Diffusion in the Fractional Diffusion Equation," Mathematics, MDPI, vol. 9(13), pages 1-29, June.
    5. Rui, Weiguo & Yang, Xinsong & Chen, Fen, 2022. "Method of variable separation for investigating exact solutions and dynamical properties of the time-fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:319:y:2003:i:c:p:245-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.