IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v188y2021icp280-290.html
   My bibliography  Save this article

Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative

Author

Listed:
  • Wei, Leilei
  • Li, Wenbo

Abstract

In this paper, we construct and investigate an accurate numerical scheme for solving a class of variable-order (VO) fractional diffusion equation based on the Caputo–Fabrizio fractional derivative. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. For all variable-order α(t)∈(0,1), we derive the stability and L2 convergence of proposed scheme and prove that the method is of accuracy-order O(τ+hk+1), where τ, h and k are temporal step sizes, spatial step sizes and the degree of piecewise Pk polynomials, respectively. Several numerical tests are given to validate the theoretical analysis and efficiency of the proposed algorithm.

Suggested Citation

  • Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
  • Handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:280-290
    DOI: 10.1016/j.matcom.2021.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421001191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haq, Sirajul & Ghafoor, Abdul & Hussain, Manzoor, 2019. "Numerical solutions of variable order time fractional (1+1)- and (1+2)-dimensional advection dispersion and diffusion models," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 107-121.
    2. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    3. Sun, HongGuang & Chen, Wen & Chen, YangQuan, 2009. "Variable-order fractional differential operators in anomalous diffusion modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4586-4592.
    4. Emile Franc Doungmo Goufo & Sunil Kumar, 2017. "Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, February.
    5. Li, Changpin & Wang, Zhen, 2021. "Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 838-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Wei, Leilei & Wang, Huanhuan, 2023. "Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 685-698.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    4. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Tabatabaei, S. Sepehr & Talebi, H.A. & Tavakoli, M., 2017. "A novel adaptive order/parameter identification method for variable order systems application in viscoelastic soft tissue modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 447-455.
    7. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Zahra, Waheed K. & Abdel-Aty, Mahmoud & Abidou, Diaa, 2020. "A fractional model for estimating the hole geometry in the laser drilling process of thin metal sheets," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Li, Changpin & Li, Dongxia & Wang, Zhen, 2021. "L1/LDG method for the generalized time-fractional Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 357-378.
    10. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    12. Meng, Ruifan & Yin, Deshun & Yang, Haixia & Xiang, Guangjian, 2020. "Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Nataliia Kinash & Jaan Janno, 2019. "An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    14. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    15. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Wu, Fei & Gao, Renbo & Liu, Jie & Li, Cunbao, 2020. "New fractional variable-order creep model with short memory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    17. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Mohammed, Pshtiwan Othman & Kürt, Cemaliye & Abdeljawad, Thabet, 2022. "Bivariate discrete Mittag-Leffler functions with associated discrete fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    20. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:280-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.