IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v358y2019icp80-90.html
   My bibliography  Save this article

Lattice Boltzmann model for time sub-diffusion equation in Caputo sense

Author

Listed:
  • Du, Rui
  • Sun, Dongke
  • Shi, Baochang
  • Chai, Zhenhua

Abstract

Anomalous diffusions, including subdiffusion and superdiffusion, are usually encountered in many diverse applications in science and engineering. Although many numerical methods have been proposed to study anomalous diffusion problems that are modeled by fractional advection-diffusion equations, in this paper, a fresh lattice Boltzmann (LB) model for time sub-diffusion equation in Caputo sense is proposed. Through the Chapman-Enskog analysis, the time-fractional diffusion equation can be recovered from the developed LB model. In addition, we also test the present LB model through some problems, and find that the numerical results agree well with the analytical solutions to these problems.

Suggested Citation

  • Du, Rui & Sun, Dongke & Shi, Baochang & Chai, Zhenhua, 2019. "Lattice Boltzmann model for time sub-diffusion equation in Caputo sense," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 80-90.
  • Handle: RePEc:eee:apmaco:v:358:y:2019:i:c:p:80-90
    DOI: 10.1016/j.amc.2019.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319302966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    2. Yan, Guangwu & Zhang, Jianying, 2009. "A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1554-1565.
    3. Velivelli, A.C. & Bryden, K.M., 2006. "Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 139-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Houping & Feng, Yingxin & Wei, Xuedan & Chen, Dongdong & Zheng, Zhoushun & Wang, Jianzhong, 2023. "Space fractional-order modeling for the sintering process of metal fibers via Lattice Boltzmann method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 373-387.
    2. Rui Du & Jincheng Wang & Dongke Sun, 2019. "Lattice-Boltzmann Simulations of the Convection-Diffusion Equation with Different Reactive Boundary Conditions," Mathematics, MDPI, vol. 8(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otomo, Hiroshi & Boghosian, Bruce M. & Dubois, François, 2017. "Two complementary lattice-Boltzmann-based analyses for nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1000-1011.
    2. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Zhang, Jianying & Yan, Guangwu, 2008. "Lattice Boltzmann method for one and two-dimensional Burgers equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4771-4786.
    4. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    5. Chaudhary, Manish & Kumar, Rohit & Singh, Mritunjay Kumar, 2020. "Fractional convection-dispersion equation with conformable derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
    7. Zhang, Xiaohua & Zhang, Ping, 2018. "A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique for KdV equation," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 535-545.
    8. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    9. Krivovichev, Gerasim V., 2018. "Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 102-119.
    10. Huang, Lan-Lan & Baleanu, Dumitru & Mo, Zhi-Wen & Wu, Guo-Cheng, 2018. "Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 166-175.
    11. Wu, Longyuan & Zhai, Shuying, 2020. "A new high order ADI numerical difference formula for time-fractional convection-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    12. Duan, Jun-Sheng & Qiu, Xiang, 2018. "Stokes’ second problem of viscoelastic fluids with constitutive equation of distributed-order derivative," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 130-139.
    13. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    14. Hashan, Mahamudul & Jahan, Labiba Nusrat & Tareq-Uz-Zaman, & Imtiaz, Syed & Hossain, M. Enamul, 2020. "Modelling of fluid flow through porous media using memory approach: A review," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 643-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:358:y:2019:i:c:p:80-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.