IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v508y2018icp166-175.html
   My bibliography  Save this article

Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus

Author

Listed:
  • Huang, Lan-Lan
  • Baleanu, Dumitru
  • Mo, Zhi-Wen
  • Wu, Guo-Cheng

Abstract

This study provides some basics of fuzzy discrete fractional calculus as well as applications to fuzzy fractional discrete-time equations. With theories of r-cut set, fuzzy Caputo and Riemann–Liouville fractional differences are defined on a isolated time scale. Discrete Leibniz integral law is given by use of w-monotonicity conditions. Furthermore, equivalent fractional sum equations are established. Fuzzy discrete Mittag-Leffler functions are obtained by the Picard approximation. Finally, fractional discrete-time diffusion equations with uncertainty is investigated and exact solutions are expressed in form of two kinds of fuzzy discrete Mittag-Leffler functions. This paper suggests a discrete time tool for modeling discrete fractional systems with uncertainty.

Suggested Citation

  • Huang, Lan-Lan & Baleanu, Dumitru & Mo, Zhi-Wen & Wu, Guo-Cheng, 2018. "Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 166-175.
  • Handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:166-175
    DOI: 10.1016/j.physa.2018.03.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304126
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Yu & Viktor Vegh & Fawang Liu & Ian Turner, 2015. "A Variable Order Fractional Differential-Based Texture Enhancement Algorithm with Application in Medical Imaging," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-35, July.
    2. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    3. Pinto, Carla M.A. & Carvalho, Ana R.M., 2017. "The role of synaptic transmission in a HIV model with memory," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 76-95.
    4. Wu, Guo-Cheng & Baleanu, Dumitru & Deng, Zhen-Guo & Zeng, Sheng-Da, 2015. "Lattice fractional diffusion equation in terms of a Riesz–Caputo difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 335-339.
    5. Dorota Mozyrska & Piotr Ostalczyk, 2017. "Generalized Fractional-Order Discrete-Time Integrator," Complexity, Hindawi, vol. 2017, pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamzeh Zureigat & Mohammed Al-Smadi & Areen Al-Khateeb & Shrideh Al-Omari & Sharifah Alhazmi, 2023. "Numerical Solution for Fuzzy Time-Fractional Cancer Tumor Model with a Time-Dependent Net Killing Rate of Cancer Cells," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
    2. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Di, Ying & Zhang, Jin-Xi & Zhang, Xuefeng, 2023. "Robust stabilization of descriptor fractional-order interval systems with uncertain derivative matrices," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    4. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Lu, Ziqiang & Zhu, Yuanguo, 2019. "Numerical approach for solution to an uncertain fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 137-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    2. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    4. L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
    5. Wang, Mei & Du, Feifei & Chen, Churong & Jia, Baoguo, 2019. "Asymptotic stability of (q, h)-fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 158-167.
    6. Li, Jing & Kang, Xinyue & Shi, Xingyun & Song, Yufei, 2024. "A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 101-111.
    7. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    8. Zafar, Zain Ul Abadin & Ali, Nigar & Baleanu, Dumitru, 2021. "Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    10. Zeng, Shengda & Baleanu, Dumitru & Bai, Yunru & Wu, Guocheng, 2017. "Fractional differential equations of Caputo–Katugampola type and numerical solutions," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 549-554.
    11. Chaudhary, Manish & Kumar, Rohit & Singh, Mritunjay Kumar, 2020. "Fractional convection-dispersion equation with conformable derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    12. Abbaszadeh, Mostafa & Dehghan, Mehdi, 2021. "Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Prakash, M. & Rakkiyappan, R. & Manivannan, A. & Cao, Jinde, 2019. "Dynamical analysis of antigen-driven T-cell infection model with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 266-281.
    14. Liu, Xiping & Jia, Mei, 2019. "Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 230-242.
    15. Wu, Longyuan & Zhai, Shuying, 2020. "A new high order ADI numerical difference formula for time-fractional convection-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    16. Duan, Jun-Sheng & Qiu, Xiang, 2018. "Stokes’ second problem of viscoelastic fluids with constitutive equation of distributed-order derivative," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 130-139.
    17. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    18. Hashan, Mahamudul & Jahan, Labiba Nusrat & Tareq-Uz-Zaman, & Imtiaz, Syed & Hossain, M. Enamul, 2020. "Modelling of fluid flow through porous media using memory approach: A review," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 643-673.
    19. Shi, Ruiqing & Lu, Ting & Wang, Cuihong, 2021. "Dynamic analysis of a fractional-order model for HIV with drug-resistance and CTL immune response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 509-536.
    20. Thirumalai, Sagithya & Seshadri, Rajeswari & Yuzbasi, Suayip, 2021. "Spectral solutions of fractional differential equations modelling combined drug therapy for HIV infection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:166-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.