IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1754-d426827.html
   My bibliography  Save this article

On the Stability of Linear Incommensurate Fractional-Order Difference Systems

Author

Listed:
  • Noureddine Djenina

    (Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Laarbi Tebessi, Tebessa 12002, Algeria)

  • Adel Ouannas

    (Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Laarbi Tebessi, Tebessa 12002, Algeria)

  • Iqbal M. Batiha

    (Department of Mathematics, University of Jordan, Amman 11942, Jordan)

  • Giuseppe Grassi

    (Dipartimento Ingegneria Innovazione, Universita del Salento, 73100 Lecce, Italy)

  • Viet-Thanh Pham

    (Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam)

Abstract

To follow up on the progress made on exploring the stability investigation of linear commensurate Fractional-order Difference Systems (FoDSs), such topic of its extended version that appears with incommensurate orders is discussed and examined in this work. Some simple applicable conditions for judging the stability of these systems are reported as novel results. These results are formulated by converting the linear incommensurate FoDS into another equivalent system consists of fractional-order difference equations of Volterra convolution-type as well as by using some properties of the Z -transform method. All results of this work are verified numerically by illustrating some examples that deal with the stability of solutions of such systems.

Suggested Citation

  • Noureddine Djenina & Adel Ouannas & Iqbal M. Batiha & Giuseppe Grassi & Viet-Thanh Pham, 2020. "On the Stability of Linear Incommensurate Fractional-Order Difference Systems," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1754-:d:426827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, HongGuang & Chen, Wen & Chen, YangQuan, 2009. "Variable-order fractional differential operators in anomalous diffusion modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4586-4592.
    2. Fahd Jarad & Kenan Taş, 2012. "On Sumudu Transform Method in Discrete Fractional Calculus," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noureddine Djenina & Adel Ouannas & Iqbal M. Batiha & Giuseppe Grassi & Taki-Eddine Oussaeif & Shaher Momani, 2022. "A Novel Fractional-Order Discrete SIR Model for Predicting COVID-19 Behavior," Mathematics, MDPI, vol. 10(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    4. Wu, Fei & Gao, Renbo & Liu, Jie & Li, Cunbao, 2020. "New fractional variable-order creep model with short memory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    5. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Chauhan, Archana & Gautam, G.R. & Chauhan, S.P.S. & Dwivedi, Arpit, 2023. "A validation on concept of formula for variable order integral and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Hossein Fazli & HongGuang Sun & Juan J. Nieto, 2020. "Fractional Langevin Equation Involving Two Fractional Orders: Existence and Uniqueness Revisited," Mathematics, MDPI, vol. 8(5), pages 1-10, May.
    9. Pu, Zhe & Ran, Maohua & Luo, Hong, 2021. "Fast and high-order difference schemes for the fourth-order fractional sub-diffusion equations with spatially variable coefficient under the first Dirichlet boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 110-133.
    10. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    11. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    12. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    13. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    14. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    15. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    17. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    18. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    19. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    20. Tabatabaei, S. Sepehr & Talebi, H.A. & Tavakoli, M., 2017. "A novel adaptive order/parameter identification method for variable order systems application in viscoelastic soft tissue modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 447-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1754-:d:426827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.