IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp56-67.html
   My bibliography  Save this article

Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions

Author

Listed:
  • An, Yanzhao
  • Raman, Vallinayagam
  • Tang, Qinglong
  • Shi, Hao
  • Sim, Jaeheon
  • Chang, Junseok
  • Magnotti, Gaetano
  • Johansson, Bengt

Abstract

The study aims to investigate the sensitivity of combustion stability to the intake air temperature for partially premixed combustion (PPC). The experiments were carried out in a full view optical engine at low load condition. The ω shape optical piston crown as same as the actual product piston, rather than the flat crown piston used in the previous study, was employed for the present experimental test. The continuous-fire mode rather than the skip-fire mode was used to run the optical engine ensuring the similarity to the actual engine operating conditions. The interaction among fuel spray jets, piston and cylinder wall was visualized by fuel-tracer planar laser-induced fluorescence. The high-speed combustion images were processed to determine the combustion stratification based on the natural flame luminosity. The combustion phasing, maximum in-cylinder pressure, and indicated mean effective pressure (IMEP) were compared at various intake temperatures. The results showed that the lower intake temperature could be used for achieving better combustion stability at low load condition along with the retarded CA50, the lower maximum in-cylinder pressure, and the higher IMEP. 70 °C was the lower limit of intake temperature to achieve stable PPC operation with the single-injection strategy. The same trend of the combustion characteristics with respect to the start of injection timing was confirmed at various intake temperatures. The combustion stratification analysis indicated more inhomogeneous low-temperature combustion with decreased natural flame luminosity and increased soot emission when the intake temperature reduced from 120 °C to 70 °C. Nitrogen oxides emission decreased when compared to the higher intake temperature cases at the expense of increased unburned hydrocarbon and carbon monoxide emissions at PPC mode. The fuel tracer measurements showed that most of the injected fuel hit on the piston top and only less amount of fuel was injected into the piston crown bowl at PPC mode due to the wider spray umbrella angle. The fuel trapped in crevice zone was verified as an important source for the unburned hydrocarbon and carbon monoxide emissions at PPC mode. The injector dribbling during the late stage of combustion attributed to soot formation. The injector with a relatively narrow spray umbrella angle was suggested for optimized interaction among the fuel spray jets, piston and the cylinder wall at PPC mode.

Suggested Citation

  • An, Yanzhao & Raman, Vallinayagam & Tang, Qinglong & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions," Applied Energy, Elsevier, vol. 235(C), pages 56-67.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:56-67
    DOI: 10.1016/j.apenergy.2018.10.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918316556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    2. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    3. Jia, Ming & Xie, Maozhao & Wang, Tianyou & Peng, Zhijun, 2011. "The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation," Applied Energy, Elsevier, vol. 88(9), pages 2967-2975.
    4. An, Yanzhao & Jaasim, Mohammed & Raman, Vallinayagam & Hernández Pérez, Francisco E. & Sim, Jaeheon & Chang, Junseok & Im, Hong G. & Johansson, Bengt, 2018. "Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline," Energy, Elsevier, vol. 158(C), pages 181-191.
    5. Qiu, Liang & Cheng, Xiaobei & Liu, Bei & Dong, Shijun & Bao, Zufeng, 2016. "Partially premixed combustion based on different injection strategies in a light-duty diesel engine," Energy, Elsevier, vol. 96(C), pages 155-165.
    6. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept," Applied Energy, Elsevier, vol. 134(C), pages 90-101.
    7. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine," Applied Energy, Elsevier, vol. 190(C), pages 658-669.
    8. Charalambides, A.G. & Sahu, S. & Hardalupas, Y. & Taylor, A.M.K.P. & Urata, Y., 2018. "Evaluation of Homogeneous Charge Compression Ignition (HCCI) autoignition development through chemiluminescence imaging and Proper Orthogonal Decomposition," Applied Energy, Elsevier, vol. 210(C), pages 288-302.
    9. An, Yan-zhao & Pei, Yi-qiang & Qin, Jing & Zhao, Hua & Teng, Sheng-ping & Li, Bing & Li, Xiang, 2016. "Development of a PAH (polycyclic aromatic hydrocarbon) formation model for gasoline surrogates and its application for GDI (gasoline direct injection) engine CFD (computational fluid dynamics) simulat," Energy, Elsevier, vol. 94(C), pages 367-379.
    10. Tang, Qinglong & Liu, Haifeng & Li, Mingkun & Yao, Mingfa, 2017. "Optical study of spray-wall impingement impact on early-injection gasoline partially premixed combustion at low engine load," Applied Energy, Elsevier, vol. 185(P1), pages 708-719.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    2. An, Yanzhao & Tang, Qinglong & Vallinayagam, Raman & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel," Applied Energy, Elsevier, vol. 248(C), pages 626-639.
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Yanzhao & Tang, Qinglong & Vallinayagam, Raman & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel," Applied Energy, Elsevier, vol. 248(C), pages 626-639.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. An, Yanzhao & Jaasim, Mohammed & Raman, Vallinayagam & Hernández Pérez, Francisco E. & Sim, Jaeheon & Chang, Junseok & Im, Hong G. & Johansson, Bengt, 2018. "Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline," Energy, Elsevier, vol. 158(C), pages 181-191.
    4. Calam, Alper & Solmaz, Hamit & Yılmaz, Emre & İçingür, Yakup, 2019. "Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine," Energy, Elsevier, vol. 168(C), pages 1208-1216.
    5. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine," Applied Energy, Elsevier, vol. 190(C), pages 658-669.
    6. Singh, Akhilendra Pratap & Kumar, Vikram & Agarwal, Avinash Kumar, 2020. "Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes," Applied Energy, Elsevier, vol. 278(C).
    7. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    8. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    9. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    10. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    11. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    12. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    13. Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael, 2018. "Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles," Energy, Elsevier, vol. 157(C), pages 19-30.
    14. Cheng, Qiang & Ahmad, Zeeshan & Kaario, Ossi & Martti, Larmi, 2019. "Cycle-to-cycle variations of dual-fuel combustion in an optically accessible engine," Applied Energy, Elsevier, vol. 254(C).
    15. Chen, Lin & Zhang, Ren & Pan, Jiaying & Wei, Haiqiao, 2020. "Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions," Applied Energy, Elsevier, vol. 260(C).
    16. Desantes, José M. & Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier, 2014. "The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency," Energy, Elsevier, vol. 78(C), pages 854-868.
    17. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance," Applied Energy, Elsevier, vol. 129(C), pages 1-9.
    18. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    19. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    20. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.