IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v107y2013icp304-314.html
   My bibliography  Save this article

Influence of EGR and oxygen-enriched air on diesel engine NO–Smoke emission and combustion characteristic

Author

Listed:
  • Zhang, Wei
  • Chen, Zhaohui
  • Li, Weidong
  • Shu, Gequn
  • Xu, Biao
  • Shen, Yinggang

Abstract

The oxygen enriched combustion of diesel engines can reduce smoke emission and increase engine thermal efficiency; however it can also lead to an increase of NO emission. In this paper, experiment was conducted on a turbocharged direct injection diesel engine, and oxygen-enriched and EGR techniques were used to produce lower NO–Smoke emission than the unmodified engine under the same fuel supply rate curve and fuel supply quantity. The specific fuel consumption and the power loss were lower than 5% compared to the unmodified engine. The effect of oxygen enrichment on the particle size distribution was tested and analyzed. The results revealed that the optimal NO–Smoke emission can be achieved at these conditions: 1600rpm of engine speed, full load, 30–40% EGR rate and 21.5–22.5% of intake oxygen density; 2200rpm of engine speed, full load, 20–45% EGR rate and 22–24% of intake oxygen density. The result of particle size distribution tests revealed that oxygen enriched combustion can effectively suppress the diameter growth of particles and lead to fewer large particles with a diameter larger than 100nm emissions; however it did lead to an increase of 15nm small particles. A reduced n-heptane kinetic model was also developed in this research which contained NO and PAHs formation mechanisms, and the model was coupled with a CFD model to simulate the oxygen-enriched combustion of a diesel engine. The calculated results demonstrated that the coupled model can accurately predict ignition time and the change of in-cylinder pressure when the combined oxygen-enriched and EGR technique was used. The computed NO change with in-cylinder oxygen density agreed well with experiment results, and the computed result of the growth experience of PAHs showed that oxygen-enriched combustion can effectively suppress HACA reaction during PAHs formation, which leads to the reduction of large molecule PAHs, and this result agreed well with the observed situation that particle size diameter decreases with the increase of intake oxygen density.

Suggested Citation

  • Zhang, Wei & Chen, Zhaohui & Li, Weidong & Shu, Gequn & Xu, Biao & Shen, Yinggang, 2013. "Influence of EGR and oxygen-enriched air on diesel engine NO–Smoke emission and combustion characteristic," Applied Energy, Elsevier, vol. 107(C), pages 304-314.
  • Handle: RePEc:eee:appene:v:107:y:2013:i:c:p:304-314
    DOI: 10.1016/j.apenergy.2013.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiboom, Alain & Tauzia, Xavier & Hétet, Jean-François, 2008. "Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine," Energy, Elsevier, vol. 33(1), pages 22-34.
    2. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    3. Kegl, Breda, 2011. "Influence of biodiesel on engine combustion and emission characteristics," Applied Energy, Elsevier, vol. 88(5), pages 1803-1812, May.
    4. Bedoya, Iván D. & Saxena, Samveg & Cadavid, Francisco J. & Dibble, Robert W. & Wissink, Martin, 2012. "Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation," Applied Energy, Elsevier, vol. 97(C), pages 618-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Mingzhang & Zheng, Zeyuan & Huang, Rong & Zhou, Xiaorong & Huang, Haozhong & Pan, Jiaying & Chen, Zhaohui, 2019. "Reduction in PM and NOX of a diesel engine integrated with n-octanol fuel addition and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    2. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    3. Aliyu, Mansur & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Said, Syed A.M. & Habib, Mohamed A., 2022. "Effects of adiabatic flame temperature on flames’ characteristics in a gas-turbine combustor," Energy, Elsevier, vol. 243(C).
    4. Hazar, Hanbey & Tekdogan, Remziye & Sevinc, Huseyin, 2021. "Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine," Energy, Elsevier, vol. 236(C).
    5. Meng Lyu & Yousif Alsulaiman & Matthew J. Hall & Ronald D. Matthews, 2022. "Impacts of Intake Throttling on the Combustion Characteristics and Emissions of a Light-Duty Diesel Engine under the Idle Mode," Energies, MDPI, vol. 15(23), pages 1-12, November.
    6. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & Wang, Chenguang & Yuan, Haoran, 2017. "Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition," Energy, Elsevier, vol. 126(C), pages 796-809.
    7. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    8. Park, Youngsoo & Bae, Choongsik, 2014. "Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine," Applied Energy, Elsevier, vol. 133(C), pages 308-316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    2. Rajasekar, E. & Murugesan, A. & Subramanian, R. & Nedunchezhian, N., 2010. "Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2113-2121, September.
    3. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    4. Tauzia, Xavier & Maiboom, Alain & Shah, Samiur Rahman, 2010. "Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine," Energy, Elsevier, vol. 35(9), pages 3628-3639.
    5. Kozarac, Darko & Taritas, Ivan & Vuilleumier, David & Saxena, Samveg & Dibble, Robert W., 2016. "Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine," Energy, Elsevier, vol. 115(P1), pages 180-193.
    6. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    7. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    8. Liu, Bolan & Zhang, Fujun & Zhao, Changlu & An, Xiaohui & Pei, Haijun, 2016. "A novel lambda-based EGR (exhaust gas recirculation) modulation method for a turbocharged diesel engine under transient operation," Energy, Elsevier, vol. 96(C), pages 521-530.
    9. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    10. Edward Roper & Yaodong Wang & Zhichao Zhang, 2022. "Numerical Investigation of the Application of Miller Cycle and Low-Carbon Fuels to Increase Diesel Engine Efficiency and Reduce Emissions," Energies, MDPI, vol. 15(5), pages 1-20, February.
    11. Kumar, R. Sathish & Sivakumar, S. & Joshuva, A. & Deenadayalan, G. & Vishnuvardhan, R., 2021. "Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics," Energy, Elsevier, vol. 217(C).
    12. Korakianitis, T. & Imran, S. & Chung, N. & Ali, Hassan & Emberson, D.R. & Crookes, R.J., 2015. "Combustion-response mapping procedure for internal-combustion engine emissions," Applied Energy, Elsevier, vol. 156(C), pages 149-158.
    13. Xu, Shuaiqing & Wang, Yang & Zhang, Xiao & Zhen, Xudong & Tao, Chengjun, 2012. "Development of a novel common-rail type Dimethyl ether (DME) injector," Applied Energy, Elsevier, vol. 94(C), pages 1-12.
    14. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    15. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    16. Jozef Martinka & Peter Rantuch & Igor Wachter, 2019. "Impact of Water Content on Energy Potential and Combustion Characteristics of Methanol and Ethanol Fuels," Energies, MDPI, vol. 12(18), pages 1-16, September.
    17. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    18. Mohamed Ibrahim, M. & Varuna Narasimhan, J. & Ramesh, A., 2015. "Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels," Energy, Elsevier, vol. 89(C), pages 990-1000.
    19. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    20. Tripathi, Shweta & Subramanian, K.A., 2017. "Experimental investigation of utilization of Soya soap stock based acid oil biodiesel in an automotive compression ignition engine," Applied Energy, Elsevier, vol. 198(C), pages 332-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:107:y:2013:i:c:p:304-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.