IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6267-d1227591.html
   My bibliography  Save this article

Experimental and Numerical Evaluation of an HCCI Engine Fueled with Biogas for Power Generation under Sub-Atmospheric Conditions

Author

Listed:
  • Sebastián H. Quintana

    (Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía (GASURE), University of Antioquia, Medellín 050010, Colombia
    These authors contributed equally to this work.)

  • Andrés D. Morales Rojas

    (Grupo de Investigación e Innovación en Energía (GIIEN), Institución Universitaria Pascual Bravo, Medellín 050034, Colombia
    These authors contributed equally to this work.)

  • Iván D. Bedoya

    (Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía (GASURE), University of Antioquia, Medellín 050010, Colombia
    These authors contributed equally to this work.)

Abstract

Energy transition to renewable sources and more efficient technologies is needed for sustainable development. Although this transition is expected to take a longer time in developing countries, strategies that have been widely explored by the international academic community, such as advanced combustion modes and microgeneration, could be implemented more easily. However, the implementation of these well-known strategies in developing countries requires in-depth research because of the specific technical, environmental, social, and economic conditions. The present research relies on the use of biogas-fueled HCCI engines for power generation under sub-atmospheric conditions provided by high altitudes above sea level in Colombia. A small air-cooled commercial Diesel engine was modified to run in HCCI combustion mode by controlling the air–biogas mixture temperature using an electric heater at a high speed of 1800 revolutions per minute. An experimental setup was implemented to measure and control the most important experimental variables, such as engine speed, biogas flow rate, intake temperature, crank angle degree, intake pressure, NOx emissions, and in-cylinder pressure. High intake temperature requirements of around 320 ∘ C were needed to achieve stable HCCI combustion; the maximum net indicated mean effective pressure (IMEPn) was around 1.5 bar, and the highest net indicated efficiency was close to 32 % . Higher intake pressures and the addition of ozone to the intake mixture were numerically studied as ways to reduce the intake temperature requirements for stable HCCI combustion and improve engine performance. These strategies were studied using a one-zone model along with detailed chemical kinetics, and the model was adjusted using the experimental results. The simulation results showed that the addition of 500 ppm of ozone could reduce the intake temperature requirements by around 50 ∘ C. The experimental and numerical results achieved in this research are important for the design and implementation of HCCI engines running biogas for microgeneration systems in developing countries which exhibit more difficult conditions for HCCI combustion implementation.

Suggested Citation

  • Sebastián H. Quintana & Andrés D. Morales Rojas & Iván D. Bedoya, 2023. "Experimental and Numerical Evaluation of an HCCI Engine Fueled with Biogas for Power Generation under Sub-Atmospheric Conditions," Energies, MDPI, vol. 16(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6267-:d:1227591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bedoya, Iván D. & Saxena, Samveg & Cadavid, Francisco J. & Dibble, Robert W. & Wissink, Martin, 2012. "Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation," Applied Energy, Elsevier, vol. 97(C), pages 618-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Koszalka & Andrzej Wolff, 2023. "Frictional Losses of Ring Pack in SI and HCCI Engine," Energies, MDPI, vol. 16(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    2. Kozarac, Darko & Taritas, Ivan & Vuilleumier, David & Saxena, Samveg & Dibble, Robert W., 2016. "Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine," Energy, Elsevier, vol. 115(P1), pages 180-193.
    3. Esfahanian, Vahid & Salahi, Mohammad Mahdi & Gharehghani, Ayatallah & Mirsalim, Mostafa, 2017. "Extending the lean operating range of a premixed charged compression ignition natural gas engine using a pre-chamber," Energy, Elsevier, vol. 119(C), pages 1181-1194.
    4. Lee, Sunyoup & Park, Seunghyun & Kim, Changgi & Kim, Young-Min & Kim, Yongrae & Park, Cheolwoong, 2014. "Comparative study on EGR and lean burn strategies employed in an SI engine fueled by low calorific gas," Applied Energy, Elsevier, vol. 129(C), pages 10-16.
    5. Mohamed Ibrahim, M. & Varuna Narasimhan, J. & Ramesh, A., 2015. "Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels," Energy, Elsevier, vol. 89(C), pages 990-1000.
    6. Saxena, Samveg & Schneider, Silvan & Aceves, Salvador & Dibble, Robert, 2012. "Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels," Applied Energy, Elsevier, vol. 98(C), pages 448-457.
    7. Yağlı, Hüseyin & Koç, Yıldız & Koç, Ali & Görgülü, Adnan & Tandiroğlu, Ahmet, 2016. "Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat," Energy, Elsevier, vol. 111(C), pages 923-932.
    8. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    9. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    10. Komninos, N.P., 2015. "The effect of thermal stratification on HCCI combustion: A numerical investigation," Applied Energy, Elsevier, vol. 139(C), pages 291-302.
    11. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    12. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    13. Broekaert, Stijn & De Cuyper, Thomas & De Paepe, Michel & Verhelst, Sebastian, 2017. "Evaluation of empirical heat transfer models for HCCI combustion in a CFR engine," Applied Energy, Elsevier, vol. 205(C), pages 1141-1150.
    14. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.
    15. Zhang, Wei & Chen, Zhaohui & Li, Weidong & Shu, Gequn & Xu, Biao & Shen, Yinggang, 2013. "Influence of EGR and oxygen-enriched air on diesel engine NO–Smoke emission and combustion characteristic," Applied Energy, Elsevier, vol. 107(C), pages 304-314.
    16. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6267-:d:1227591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.