IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v95y2012icp196-201.html
   My bibliography  Save this article

Effect of the anthracite ratio of blended coals on the combustion and NOx emission characteristics of a retrofitted down-fired 660-MWe utility boiler

Author

Listed:
  • Liu, Guangkui
  • Li, Zhengqi
  • Chen, Zhichao
  • Zhu, Xingying
  • Zhu, Qunyi

Abstract

Industrial experiments were performed for a retrofitted 660-MWe full-scale arch-fired boiler. The ignition position of the primary air/fuel mixture flow, furnace temperature and flue gas component after the air heater were measured with different anthracite ratios at loads of 660- and 380-MWe. As the ratio of anthracite increased, the gas temperature decreased in the fuel-burning zones of the C4 and C6 burners, indicating a farther ignition position of the primary fuel/air flow under the arches, the gas temperature of the lower furnace decreased while that of the upper furnace increased, NOx emissions decreased while both the exhaust gas temperature and carbon content in fly ash increased, and the boiler efficiency decreased. At the rated load, an anthracite ratio of 35% was optimal for economical efficiency. At low load, the negative gas pressure fluctuated remarkably, which led to unstable combustion in the furnace. To ensure safe and stable operation of the boiler, a mass ratio of anthracite of 25% is advisable.

Suggested Citation

  • Liu, Guangkui & Li, Zhengqi & Chen, Zhichao & Zhu, Xingying & Zhu, Qunyi, 2012. "Effect of the anthracite ratio of blended coals on the combustion and NOx emission characteristics of a retrofitted down-fired 660-MWe utility boiler," Applied Energy, Elsevier, vol. 95(C), pages 196-201.
  • Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:196-201
    DOI: 10.1016/j.apenergy.2012.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorenz, Urszula & Grudzinski, Zbigniew, 2003. "Hard coal for energetic purposes: price-quality relationships; international coal market observations and Polish practice," Applied Energy, Elsevier, vol. 74(3-4), pages 271-279, March.
    2. Li, Zhengqi & Liu, Guangkui & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Combustion and NOx emission characteristics of a retrofitted down-fired 660Â MWe utility boiler at different loads," Applied Energy, Elsevier, vol. 88(7), pages 2400-2406, July.
    3. Ren, Feng & Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zhu, Qunyi, 2011. "Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept," Energy, Elsevier, vol. 36(1), pages 70-77.
    4. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qingxiang & Chen, Zhichao & Che, Miaomiao & Zeng, Lingyan & Li, Zhengqi & Song, Minhang, 2016. "Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air," Applied Energy, Elsevier, vol. 182(C), pages 29-38.
    2. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    3. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
    4. Kuang, Min & Yang, Guohua & Zhu, Qunyi & Ti, Shuguang & Wang, Zhenfeng, 2017. "Effect of burner location on flow-field deflection and asymmetric combustion in a 600MWe supercritical down-fired boiler," Applied Energy, Elsevier, vol. 206(C), pages 1393-1405.
    5. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    6. Kuang, Min & Li, Zhengqi, 2014. "Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers," Energy, Elsevier, vol. 69(C), pages 144-178.
    7. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    8. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    9. Kuang, Min & Li, Zhengqi & Liu, Chunlong & Zhu, Qunyi, 2013. "Experimental study on combustion and NOx emissions for a down-fired supercritical boiler with multiple-injection multiple-staging technology without overfire air," Applied Energy, Elsevier, vol. 106(C), pages 254-261.
    10. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    11. Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).
    12. Zhao, Haitao & Mu, Xueliang & Yang, Gang & George, Mike & Cao, Pengfei & Fanady, Billy & Rong, Siyu & Gao, Xiang & Wu, Tao, 2017. "Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants," Applied Energy, Elsevier, vol. 207(C), pages 254-264.
    13. Kuang, Min & Wu, Haiqian & Zhu, Qunyi & Ti, Shuguang, 2018. "Establishing an overall symmetrical combustion setup for a 600 MWe supercritical down-fired boiler: A numerical and cold-modeling experimental verification," Energy, Elsevier, vol. 147(C), pages 208-225.
    14. Wu, Haiqian & Kuang, Min & Wang, Jialin & Zhao, Xiaojuan & Yang, Guohua & Ti, Shuguang & Ding, Jieyi, 2020. "Lower-arch location effect on the flow field, coal combustion, and NOx formation characteristics in a cascade-arch, down-fired furnace," Applied Energy, Elsevier, vol. 268(C).
    15. Kuang, Min & Zhu, Qunyi & Ling, Zhongqian & Ti, Shuguang & Li, Zhengqi, 2017. "Improving gas/particle flow deflection and asymmetric combustion of a 600 MWe supercritical down-fired boiler by increasing its upper furnace height," Energy, Elsevier, vol. 127(C), pages 581-593.
    16. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Min & Wu, Haiqian & Zhu, Qunyi & Ti, Shuguang, 2018. "Establishing an overall symmetrical combustion setup for a 600 MWe supercritical down-fired boiler: A numerical and cold-modeling experimental verification," Energy, Elsevier, vol. 147(C), pages 208-225.
    2. Kuang, Min & Li, Zhengqi & Zhu, Qunyi & Zhang, Yan, 2013. "Performance assessment of staged-air declination in improving asymmetric gas/particle flow characteristics within a down-fired 600 MWe supercritical utility boiler," Energy, Elsevier, vol. 49(C), pages 423-433.
    3. Kuang, Min & Li, Zhengqi, 2014. "Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers," Energy, Elsevier, vol. 69(C), pages 144-178.
    4. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
    5. Liu, Chunlong & Li, Zhengqi & Zhang, Xiang & Jing, Xinjing & Zhang, Wenzhen & Chen, Zhichao & Zhu, Qunyi, 2012. "Aerodynamic characteristics within a cold small-scale model for a down-fired 350 MWe supercritical utility boiler at various primary air to vent air ratios," Energy, Elsevier, vol. 47(1), pages 294-301.
    6. Kuang, Min & Li, Zhengqi & Zhu, Qunyi & Wang, Yang & Chen, Lizhe & Zhang, Yan, 2012. "Experimental gas/particle flow characteristics of a down-fired 600 MWe supercritical utility boiler at different staged-air ratios," Energy, Elsevier, vol. 42(1), pages 411-423.
    7. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.
    8. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    9. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    10. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    11. Valentine, Scott Victor, 2014. "The socio-political economy of electricity generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 416-429.
    12. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    13. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    14. Géza Tóth & Tekla Sebestyén Szép, 2019. "Spatial Evolution of the Energy and Economic Centers of Gravity," Resources, MDPI, vol. 8(2), pages 1-19, May.
    15. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    16. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    17. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.
    18. Duan, Liqiang & Zhao, Mingde & Yang, Yongping, 2012. "Integration and optimization study on the coal-fired power plant with CO2 capture using MEA," Energy, Elsevier, vol. 45(1), pages 107-116.
    19. Hu, Yu & Monroy, Carlos Rodríguez, 2012. "Chinese energy and climate policies after Durban: Save the Kyoto Protocol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3243-3250.
    20. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:95:y:2012:i:c:p:196-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.