IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp457-465.html
   My bibliography  Save this article

Condensed Rotational Separation of CO2

Author

Listed:
  • van Benthum, R.J.
  • van Kemenade, H.P.
  • Brouwers, J.J.H.
  • Golombok, M.

Abstract

Condensed Rotational Separation is a technique in which flue gas is cleaned by condensation of the CO2 and mechanical centrifugal separation. It requires partial purification of CO2 to concentrations above 50% in the flue gas, prior to separation. This purification can be realized with existing techniques like oxygen enriched coal combustion or CO2 separating membranes. Combined with a partial enrichment technique, Condensed Rotational Separation provides an answer that can compete with promising conventional techniques for CO2 capture, like oxy-fuel combustion or amine absorption. These conventional techniques produce a waste stream with a high CO2 purity that can be compressed to supercritical pressure for transport and storage. It is shown that the energy consumption of Condensed Rotational Separation is only slightly more than gas compression of a sequestration stream resulting from conventional separation techniques. The net result is that the total energy consumption becomes less because of the savings due to partial oxygen/CO2 enrichment.

Suggested Citation

  • van Benthum, R.J. & van Kemenade, H.P. & Brouwers, J.J.H. & Golombok, M., 2012. "Condensed Rotational Separation of CO2," Applied Energy, Elsevier, vol. 93(C), pages 457-465.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:457-465
    DOI: 10.1016/j.apenergy.2011.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191100821X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, H. & Yan, J. & Yan, J. & Anheden, M., 2009. "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system," Applied Energy, Elsevier, vol. 86(2), pages 202-213, February.
    2. Theunissen, Ton & Golombok, Mike & Brouwers, J.J.H. (Bert) & Bansal, Gagan & van Benthum, Rob, 2011. "Liquid CO2 droplet extraction from gases," Energy, Elsevier, vol. 36(5), pages 2961-2967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Hongming & Xue, Kaili & Li, Zhaohao & Zhang, Heng & Gao, Dan & Chen, Haiping, 2023. "Study on the performance of CO2 capture from flue gas with ceramic and PTFE membrane contactors," Energy, Elsevier, vol. 263(PA).
    2. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Sapna & Adams, Joseph J. & Wilson, Jamie R. & Eddings, Eric G. & Mahapatra, Manoj K. & Singh, Prabhakar, 2016. "Performance and post-test characterization of an OTM system in an experimental coal gasifier," Applied Energy, Elsevier, vol. 165(C), pages 72-80.
    2. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    3. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conv," Applied Energy, Elsevier, vol. 86(6), pages 815-825, June.
    4. Odi Fawwaz Alrebei & Abdulkarem I. Amhamed & Syed Mashruk & Phil Bowen & Agustin Valera Medina, 2021. "Planar Laser-Induced Fluorescence and Chemiluminescence Analyses of CO 2 -Argon-Steam Oxyfuel (CARSOXY) Combustion," Energies, MDPI, vol. 15(1), pages 1-23, December.
    5. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    6. Li, H. & Yan, J., 2009. "Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 86(12), pages 2760-2770, December.
    7. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    8. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    9. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    10. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    11. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    12. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    13. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    14. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    15. Choi, Munkyoung & Cho, Minki & Lee, J.W., 2016. "Empirical formula for the mass flux in chemical absorption of CO2 with ammonia droplets," Applied Energy, Elsevier, vol. 164(C), pages 1-9.
    16. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    17. Hu, Yukun & Li, Xun & Li, Hailong & Yan, Jinyue, 2013. "Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems," Applied Energy, Elsevier, vol. 112(C), pages 747-754.
    18. Woo, Mino & Choi, Byung Chul & Ghoniem, Ahmed F., 2016. "Experimental and numerical studies on NOx emission characteristics in laminar non-premixed jet flames of ammonia-containing methane fuel with oxygen/nitrogen oxidizer," Energy, Elsevier, vol. 114(C), pages 961-972.
    19. Wenchao Yang & Shuhong Li & Xianliang Li & Yuanyuan Liang & Xiaosong Zhang, 2015. "Analysis of a New Liquefaction Combined with Desublimation System for CO 2 Separation Based on N 2 /CO 2 Phase Equilibrium," Energies, MDPI, vol. 8(9), pages 1-14, September.
    20. Gang Xu & Feifei Liang & Yongping Yang & Yue Hu & Kai Zhang & Wenyi Liu, 2014. "An Improved CO 2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory," Energies, MDPI, vol. 7(5), pages 1-19, May.

    More about this item

    Keywords

    CO2 separation; Coal-fired power plants;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:457-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.