IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p496-503.html
   My bibliography  Save this article

Transport energy demand forecast using multi-level genetic programming

Author

Listed:
  • Forouzanfar, Mehdi
  • Doustmohammadi, A.
  • Hasanzadeh, Samira
  • Shakouri G, H.

Abstract

In this paper, a new multi-level genetic programming (MLGP) approach is introduced for forecasting transport energy demand (TED) in Iran. It is shown that the result obtained here has smaller error compared with the result obtained using neural network or fuzzy linear regression approach. The forecast uses historical energy data from 1968 to 2002 and it is based on three parameters; gross domestic product (GDP), population (POP), and the number of vehicles (VEH). The approach taken in this paper is based on genetic programming (GP) and the multi-level part of the name comes from the fact that we use GP in two different levels. At the first level, GP is used to obtain the time series model of the three parameters, GDP, POP, and VEH, and forecast those parameters for the time interval that their actual data are not available, and at the second level GP is used one more time to forecast TED based on available data for TED along with the data that are either available or predicted for the three parameters discussed earlier. Actual data from 1968 to 2002 are used for training and the data for years 2003–2005 are used to test the GP model. We have limited ourselves to these data ranges so that we could compare our results with the existing ones in the literature. The estimation GP for the model is formulated as a nonlinear optimization problem and it is solved numerically.

Suggested Citation

  • Forouzanfar, Mehdi & Doustmohammadi, A. & Hasanzadeh, Samira & Shakouri G, H., 2012. "Transport energy demand forecast using multi-level genetic programming," Applied Energy, Elsevier, vol. 91(1), pages 496-503.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:496-503
    DOI: 10.1016/j.apenergy.2011.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911005149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Blakemore, F. B. & Davies, C. & Isaac, J. G., 1994. "UK energy market: An analysis of energy demands. Part I: A disaggregated sectorial approach," Applied Energy, Elsevier, vol. 48(3), pages 261-277.
    3. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    4. Nel, Willem P. & van Zyl, Gerhardus, 2010. "Defining limits: Energy constrained economic growth," Applied Energy, Elsevier, vol. 87(1), pages 168-177, January.
    5. Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
    6. Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
    7. Narayan, Paresh Kumar & Wong, Philip, 2009. "A panel data analysis of the determinants of oil consumption: The case of Australia," Applied Energy, Elsevier, vol. 86(12), pages 2771-2775, December.
    8. Hofman, Karen & Li, Xianguo, 2009. "Canada's energy perspectives and policies for sustainable development," Applied Energy, Elsevier, vol. 86(4), pages 407-415, April.
    9. Blakemore, F. B. & Davies, C. & Isaac, J. G., 1994. "UK energy market: An analysis of energy demands. Part II: Application of econometric models to the UK sector," Applied Energy, Elsevier, vol. 48(3), pages 279-291.
    10. Alvarez-Diaz, Marcos & Caballero Miguez, Gonzalo, 2008. "The quality of institutions: A genetic programming approach," Economic Modelling, Elsevier, vol. 25(1), pages 161-169, January.
    11. M. A. Kaboudan, 2000. "Genetic Programming Prediction of Stock Prices," Computational Economics, Springer;Society for Computational Economics, vol. 16(3), pages 207-236, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
    2. Ekaterina Grushevenko, 2015. "Complex method of petroleum products demand forecasting considering economic, demographic and technological factors," Economics and Business Letters, Oviedo University Press, vol. 4(3), pages 98-107.
    3. Jian Chai & Shubin Wang & Shouyang Wang & Ju’e Guo, 2012. "Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry," Energies, MDPI, vol. 5(3), pages 1-22, March.
    4. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    5. Tatiana Mitrova & Vyacheslav Kulagin & Dmitry Grushevenko & Ekaterina Grushevenko, 2015. "Technological Innovation as a Factor of Demand for Energy Sources in Automotive Industry," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 9(4), pages 18-31.
    6. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "Output, renewable and non-renewable energy consumption and international trade: Evidence from a panel of 69 countries," Renewable Energy, Elsevier, vol. 83(C), pages 799-808.
    7. Ersin Korkmaz & Erdem Doğan & Ali Payıdar Akgüngör, 2024. "Energy Demand Estimation in Turkey According to Road and Rail Transportation: Walrus Optimizer and White Shark Optimizer Algorithm-Based Model Development and Application," Energies, MDPI, vol. 17(19), pages 1-23, October.
    8. Abdulkerim Karaaslan & Mesliha Gezen, 2017. "Forecasting of Turkey s Sectoral Energy Demand by Using Fuzzy Grey Regression Model," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 67-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Xie, Peijun & Jamaani, Fouad, 2022. "Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 66-78.
    3. Vaillancourt, Kathleen & Alcocer, Yuri & Bahn, Olivier & Fertel, Camille & Frenette, Erik & Garbouj, Hichem & Kanudia, Amit & Labriet, Maryse & Loulou, Richard & Marcy, Mathilde & Neji, Yosra & Waaub,, 2014. "A Canadian 2050 energy outlook: Analysis with the multi-regional model TIMES-Canada," Applied Energy, Elsevier, vol. 132(C), pages 56-65.
    4. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    5. Apergis, Nicholas & Payne, James E., 2010. "The causal dynamics between coal consumption and growth: Evidence from emerging market economies," Applied Energy, Elsevier, vol. 87(6), pages 1972-1977, June.
    6. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    7. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    8. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    9. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    10. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    11. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    12. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    13. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Eric Fosu Oteng-Abayie & Prosper Awuni Ayinbilla & Maame Esi Eshun, 2018. "Macroeconomic Determinants of Crude Oil Demand in Ghana," Global Business Review, International Management Institute, vol. 19(4), pages 873-888, August.
    15. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    16. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    17. Hennessey, Ryan & Pittman, Jeremy & Morand, Annette & Douglas, Allan, 2017. "Co-benefits of integrating climate change adaptation and mitigation in the Canadian energy sector," Energy Policy, Elsevier, vol. 111(C), pages 214-221.
    18. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    19. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    20. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:496-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.