IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i9p2988-2994.html
   My bibliography  Save this article

A frequency modelling of the pressure waves in the inlet manifold of internal combustion engine

Author

Listed:
  • Chalet, David
  • Mahe, Alexandre
  • Migaud, Jérôme
  • Hetet, Jean-François

Abstract

The simulation of pressure waves in inlet and exhaust manifolds of internal combustion engines remains challenging. In this paper, a new model is presented in order to analyze these pressures waves without the use of a one-dimensional description of the system. It consists on studying the system using a frequency approach. In order to establish this model, a dynamic flow bench is used. The latter has been modified in order to generate waves in a gas which can be in motion or not. The inlet system is then characterized by its geometrical characteristics as well as the fluid characteristics. Indeed, the gas temperature and the gas velocity have a major impact on the fluid behaviour. The new model is then used in order to simulate the pressure waves into a 1-m pipe which is connected to a driven engine acting as a pulse generator. The experimental and the numerical results are in good agreement.

Suggested Citation

  • Chalet, David & Mahe, Alexandre & Migaud, Jérôme & Hetet, Jean-François, 2011. "A frequency modelling of the pressure waves in the inlet manifold of internal combustion engine," Applied Energy, Elsevier, vol. 88(9), pages 2988-2994.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2988-2994
    DOI: 10.1016/j.apenergy.2011.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911002066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Kosmadakis, G.M. & Dimaratos, A.M. & Pariotis, E.G., 2011. "Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code," Applied Energy, Elsevier, vol. 88(1), pages 111-126, January.
    2. D'Errico, G. & Cerri, T. & Pertusi, G., 2011. "Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models," Applied Energy, Elsevier, vol. 88(3), pages 767-777, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    2. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    3. Richard Fiifi Turkson & Fuwu Yan & Mohamed Kamal Ahmed Ali & Bo Liu & Jie Hu, 2016. "Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    4. Titilope Ibukun Banji & Gregg Arney & Mark Patterson & Daniel B. Olsen, 2024. "Reduction of Methane Emissions from Natural Gas Integral Compressor Engines through Fuel Injection Control," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    5. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    6. Wonjun Yoon & Jeong-Won Lee & Jungsoo Park, 2024. "Numerical Study on Prediction of Icing Phenomena in Fresh Air and Blow-by Gas Mixing Region of Diesel Engine under High Velocity of Intake Air Condition," Energies, MDPI, vol. 17(7), pages 1-15, April.
    7. Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
    8. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    9. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    10. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    11. Korakianitis, T. & Imran, S. & Chung, N. & Ali, Hassan & Emberson, D.R. & Crookes, R.J., 2015. "Combustion-response mapping procedure for internal-combustion engine emissions," Applied Energy, Elsevier, vol. 156(C), pages 149-158.
    12. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    13. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
    14. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    15. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    16. Cornolti, L. & Onorati, A. & Cerri, T. & Montenegro, G. & Piscaglia, F., 2013. "1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions," Applied Energy, Elsevier, vol. 111(C), pages 1-15.
    17. Simpson, Michael C. & Chatzopoulou, Maria Anna & Oyewunmi, Oyeniyi A. & Le Brun, Niccolo & Sapin, Paul & Markides, Christos N., 2019. "Technoeconomic analysis of internal combustion engine – organic Rankine cycle systems for combined heat and power in energy-intensive buildings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    19. Oh, Seungjae & Wang, Semyung & Cho, Sungman, 2015. "Development of Energy Efficiency Design Map based on acoustic resonance frequency of suction muffler in compressor," Applied Energy, Elsevier, vol. 150(C), pages 233-244.
    20. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2988-2994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.