IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics030626192101254x.html
   My bibliography  Save this article

Novel hybrid solar nanophotonic distillation membrane with photovoltaic module for co-production of electricity and water

Author

Listed:
  • Sanchez, Alejandro Espejo
  • Goel, Nipun
  • Otanicar, Todd

Abstract

Solar energy utilization and desalination are both critical needs for large portions of the world facing energy and water challenges. Direct contact membrane distillation is an attractive thermally driven desalination technique that can easily be integrated with solar energy. Here we propose and experimentally demonstrate for the first time a hybrid direct contact membrane desalination plus photovoltaic device. The system utilizes partially transparent photovoltaic cells to produce electricity and pass thermal energy to the nanoparticle doped membrane to produce thermal energy at the membrane surface. A custom lab-scale direct contact membrane distillation setup characterizes the membranes fabricated off-sun and on-sun. The doped membrane exhibited a 15–32% increase in desalination performance (compared to an undoped membrane) when exposed to solar irradiance while simultaneously producing an average of 0.36 W of electrical power (at a module area of 225 cm2 and solar irradiance values of ∼ 600 W/m2). Water production costs demonstrate a reduction of roughly 5% when the photovoltaic system is integrated directly into the desalination unit.

Suggested Citation

  • Sanchez, Alejandro Espejo & Goel, Nipun & Otanicar, Todd, 2022. "Novel hybrid solar nanophotonic distillation membrane with photovoltaic module for co-production of electricity and water," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s030626192101254x
    DOI: 10.1016/j.apenergy.2021.117944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101254X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    2. Soomro, Mujeeb Iqbal & Kim, Woo-Seung, 2018. "Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system," Renewable Energy, Elsevier, vol. 129(PA), pages 561-569.
    3. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaolu & Zhao, Jin & Wang, Run & Li, Yuyao & Liu, Chuanyong & Liu, Yong, 2022. "Multi-angle wide-spectrum light-trapping nanofiber membrane for highly efficient solar desalination," Applied Energy, Elsevier, vol. 328(C).
    2. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    3. Ma, Xinglong & Wang, Zhenzhen & Zhao, Zhiyong & Liang, Shen & Liu, Zuyi & Zheng, Hongfei, 2024. "Simultaneous production of electricity and potable water underwater by integrating concentrating photovoltaic with air gap membrane distillation," Renewable Energy, Elsevier, vol. 226(C).
    4. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    5. Han, Xinyue & Ding, Fan & Huang, Ju & Zhao, Xiaobo, 2023. "Hybrid nanofluid filtered concentrating photovoltaic/thermal-direct contact membrane distillation system for co-production of electricity and freshwater," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Keroglou, I. & Tsoutsos, T., 2024. "Optimal siting of solar desalination plants in Crete, Greece employing a GIS/MCDM approach," Renewable Energy, Elsevier, vol. 224(C).
    3. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    4. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    5. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    7. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    8. Saeedi, F. & Sarhaddi, F. & Behzadmehr, A., 2015. "Optimization of a PV/T (photovoltaic/thermal) active solar still," Energy, Elsevier, vol. 87(C), pages 142-152.
    9. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    10. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    11. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    12. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    13. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    14. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    15. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    16. Ramadhan, Mohammad & Naseeb, Adel, 2011. "The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait," Renewable Energy, Elsevier, vol. 36(4), pages 1272-1276.
    17. Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
    18. MD Shouquat Hossain & Laveet Kumar & Adeel Arshad & Jeyraj Selvaraj & A. K. Pandey & Nasrudin Abd Rahim, 2023. "A Comparative Investigation on Solar PVT- and PVT-PCM-Based Collector Constancy Performance," Energies, MDPI, vol. 16(5), pages 1-26, February.
    19. Baniasadi, Ehsan, 2017. "Concurrent hydrogen and water production from brine water based on solar spectrum splitting: Process design and thermoeconomic analysis," Renewable Energy, Elsevier, vol. 102(PA), pages 50-64.
    20. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s030626192101254x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.