IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v99y2012icp247-254.html
   My bibliography  Save this article

Multi-agent control system with information fusion based comfort model for smart buildings

Author

Listed:
  • Wang, Zhu
  • Wang, Lingfeng
  • Dounis, Anastasios I.
  • Yang, Rui

Abstract

From the perspective of system control, a smart and green building is a large-scale dynamic system with high complexity and a huge amount of information. Proper combination of the available information and effective control of the overall building system turns out to be a big challenge. In this study, we proposed a building indoor energy and comfort management model based on information fusion using ordered weighted averaging (OWA) aggregation. A multi-agent control system with heuristic intelligent optimization is developed to achieve a high level of comfort with the minimum power consumption. Case studies and simulation results are presented and discussed in this paper.

Suggested Citation

  • Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
  • Handle: RePEc:eee:appene:v:99:y:2012:i:c:p:247-254
    DOI: 10.1016/j.apenergy.2012.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912003686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Dounis, A. I. & Bruant, M. & Guarracino, G. & Michel, P. & Santamouris, M., 1996. "Indoor air-quality control by a fuzzy-reasoning machine in naturally ventilated buildings," Applied Energy, Elsevier, vol. 54(1), pages 11-28, May.
    3. Kusiak, Andrew & Li, Mingyang & Zhang, Zijun, 2010. "A data-driven approach for steam load prediction in buildings," Applied Energy, Elsevier, vol. 87(3), pages 925-933, March.
    4. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    5. Li, Danny H. W. & Lam, Joseph C., 2003. "An analysis of lighting energy savings and switching frequency for a daylit corridor under various indoor design illuminance levels," Applied Energy, Elsevier, vol. 76(4), pages 363-378, December.
    6. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    3. Wenquan Jin & Israr Ullah & Shabir Ahmad & Dohyeun Kim, 2019. "Occupant Comfort Management Based on Energy Optimization Using an Environment Prediction Model in Smart Homes," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    4. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    5. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    6. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    7. Israr Ullah & Rashid Ahmad & DoHyeun Kim, 2018. "A Prediction Mechanism of Energy Consumption in Residential Buildings Using Hidden Markov Model," Energies, MDPI, vol. 11(2), pages 1-20, February.
    8. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    9. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    10. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.
    11. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    12. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    13. Whiffen, T.R. & Naylor, S. & Hill, J. & Smith, L. & Callan, P.A. & Gillott, M. & Wood, C.J. & Riffat, S.B., 2016. "A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 618-633.
    14. Yang, Lei & Nagy, Zoltan & Goffin, Philippe & Schlueter, Arno, 2015. "Reinforcement learning for optimal control of low exergy buildings," Applied Energy, Elsevier, vol. 156(C), pages 577-586.
    15. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    16. Barbara Mayer & Michaela Killian & Martin Kozek, 2017. "Hierarchical Model Predictive Control for Sustainable Building Automation," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    17. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    18. Jiang, Lai & Yao, Runming & Liu, Kecheng & McCrindle, Rachel, 2017. "An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings," Applied Energy, Elsevier, vol. 205(C), pages 440-452.
    19. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    20. Bin Qian & Tao Yu & Haiquan Bi & Bo Lei, 2019. "Measurements of Energy Consumption and Environment Quality of High-Speed Railway Stations in China," Energies, MDPI, vol. 13(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:99:y:2012:i:c:p:247-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.