IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i11p3552-3564.html
   My bibliography  Save this article

Methodology proposal for territorial distribution of greenhouse gas reduction percentages in the EU according to the strategic energy policy goal

Author

Listed:
  • Tolón-Becerra, A.
  • Lastra-Bravo, X.
  • Bienvenido-Bárcena, F.

Abstract

A 20% reduction of greenhouse gas (GHG) emissions by 2020 is one of the main objectives of the European Union (EU) energy policy. However, this overall objective does not specify how it should be distributed among the Member States, according to each one's particular characteristics. Consequently, in this article a non-linear distribution methodology with dynamic objective targets for reducing GHG emissions is proposed. The goal of this methodology is to promote debate over the weighting of these overall objectives, according to the context and characteristics of each member state. First, an analysis is conducted of the situation of greenhouse gas emissions in the reference year (1990) used by the EU for reaching its goal of reducing them by 20% by 2020, and its progress from 1990 to 2007. Then, the methodology proposed was applied for the year 2020 on two territorial aggregation levels following the EUROSTAT Nomenclature of Territorial Units for Statistics (NUTS), in the EU-15 and EU-27 member countries and on a regional level in 19 Spanish Autonomous Communities and Cities (NUTS-2). Weighting is done based on CO2 intensity, GHG emissions per capita and GHG emissions per GDP. Finally, several recommendations are provided for the formulation of energy policies.

Suggested Citation

  • Tolón-Becerra, A. & Lastra-Bravo, X. & Bienvenido-Bárcena, F., 2010. "Methodology proposal for territorial distribution of greenhouse gas reduction percentages in the EU according to the strategic energy policy goal," Applied Energy, Elsevier, vol. 87(11), pages 3552-3564, November.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3552-3564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00230-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Hernández & M.Á. Gual & P. del Río & A. Caparrós, 2004. "Energy sustainability and global warming in Spain," Post-Print hal-00716328, HAL.
    2. Malik, Urooj S. & Ahmed, Mahfuz & Sombilla, Mercedita A. & Cueno, Sarah L., 2009. "Biofuels production for smallholder producers in the Greater Mekong Sub-region," Applied Energy, Elsevier, vol. 86(Supplemen), pages 58-68, November.
    3. Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
    4. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    5. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    6. Escosa, Jesús M. & Romeo, Luis M., 2009. "Optimizing CO2 avoided cost by means of repowering," Applied Energy, Elsevier, vol. 86(11), pages 2351-2358, November.
    7. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    8. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    9. Streimikiene, Dalia & Roos, Inge, 2009. "GHG emission trading implications on energy sector in Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 854-862, May.
    10. Hull, David & Ó Gallachóir, Brian P. & Walker, Neil, 2009. "Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience," Energy Policy, Elsevier, vol. 37(12), pages 5363-5375, December.
    11. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    12. Dincer, Ibrahim & Rosen, Marc A., 1999. "Energy, environment and sustainable development," Applied Energy, Elsevier, vol. 64(1-4), pages 427-440, September.
    13. Omer, Abdeen Mustafa, 2008. "Green energies and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1789-1821, September.
    14. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    15. Besmann, Theodore M., 2010. "Projections of US GHG reductions from nuclear power new capacity based on historic levels of investment," Energy Policy, Elsevier, vol. 38(5), pages 2431-2437, May.
    16. Sari, Ramazan & Soytas, Ugur, 2009. "Are global warming and economic growth compatible? Evidence from five OPEC countries?," Applied Energy, Elsevier, vol. 86(10), pages 1887-1893, October.
    17. Takeshita, Takayuki, 2009. "A strategy for introducing modern bioenergy into developing Asia to avoid dangerous climate change," Applied Energy, Elsevier, vol. 86(Supplemen), pages 222-232, November.
    18. Syri, Sanna & Amann, Markus & Capros, Pantelis & Mantzos, Leonidas & Cofala, Janusz & Klimont, Zbigniew, 2001. "Low-CO2 energy pathways and regional air pollution in Europe," Energy Policy, Elsevier, vol. 29(11), pages 871-884, September.
    19. Akimoto, Keigo & Sano, Fuminori & Homma, Takashi & Oda, Junichiro & Nagashima, Miyuki & Kii, Masanobu, 2010. "Estimates of GHG emission reduction potential by country, sector, and cost," Energy Policy, Elsevier, vol. 38(7), pages 3384-3393, July.
    20. Varone, Frederic & Aebischer, Bernard, 2001. "Energy efficiency: the challenges of policy design," Energy Policy, Elsevier, vol. 29(8), pages 615-629, June.
    21. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    22. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    23. Kemmler, Andreas & Spreng, Daniel, 2007. "Energy indicators for tracking sustainability in developing countries," Energy Policy, Elsevier, vol. 35(4), pages 2466-2480, April.
    24. Prabhakar, S.V.R.K. & Elder, Mark, 2009. "Biofuels and resource use efficiency in developing Asia: Back to basics," Applied Energy, Elsevier, vol. 86(Supplemen), pages 30-36, November.
    25. Silalertruksa, Thapat & Gheewala, Shabbir H. & Sagisaka, Masayuki, 2009. "Impacts of Thai bio-ethanol policy target on land use and greenhouse gas emissions," Applied Energy, Elsevier, vol. 86(Supplemen), pages 170-177, November.
    26. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    27. Matsumoto, Naoko & Sano, Daisuke & Elder, Mark, 2009. "Biofuel initiatives in Japan: Strategies, policies, and future potential," Applied Energy, Elsevier, vol. 86(Supplemen), pages 69-76, November.
    28. Tromborg, Erik & Bolkesjo, Torjus Folsland & Solberg, Birger, 2007. "Impacts of policy means for increased use of forest-based bioenergy in Norway--A spatial partial equilibrium analysis," Energy Policy, Elsevier, vol. 35(12), pages 5980-5990, December.
    29. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    30. Thavasi, V. & Ramakrishna, S., 2009. "Asia energy mixes from socio-economic and environmental perspectives," Energy Policy, Elsevier, vol. 37(11), pages 4240-4250, November.
    31. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    32. Hernandez, Felix & Gual, Miguel Angel & Rio, Pablo Del & Caparros, Alejandro, 2004. "Energy sustainability and global warming in Spain," Energy Policy, Elsevier, vol. 32(3), pages 383-394, February.
    33. Andris Piebalgs, 2006. "Green paper: A European strategy for sustainable, competitive and secure energy," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 7(02), pages 8-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    2. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    3. Veneri, Ottorino & Capasso, Clemente & Patalano, Stanislao, 2017. "Experimental study on the performance of a ZEBRA battery based propulsion system for urban commercial vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2005-2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tolón-Becerra, A. & Lastra-Bravo, X. & Bienvenido-Bárcena, F., 2011. "Proposal for territorial distribution of the EU 2020 political renewable energy goal," Renewable Energy, Elsevier, vol. 36(8), pages 2067-2077.
    2. Tolón-Becerra, A. & Lastra-Bravo, X. & Botta, G.F., 2010. "Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal," Energy Policy, Elsevier, vol. 38(11), pages 7093-7105, November.
    3. Jaelani, Aan & Firdaus, Slamet & Jumena, Juju, 2017. "Renewable Energy Policy in Indonesia: The Qur'anic Scientific Signals in Islamic Economics Perspective," MPRA Paper 84622, University Library of Munich, Germany, revised 18 Sep 2017.
    4. Jaelani, Aan, 2017. "Energi baru terbarukan di Indonesia: Isyarat ilmiah al-Qur’an dan implementasinya dalam ekonomi Islam [Renewable energy policy in Indonesia: Scientific signs of the Qur'an and its implementation in," MPRA Paper 83314, University Library of Munich, Germany, revised 23 Oct 2017.
    5. repec:eco:journ2:2017-04-24 is not listed on IDEAS
    6. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    7. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    8. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    9. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    10. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    11. Damien Bazin & Emna Omri & Nouri Chtourou, 2015. "Solar Thermal Energy for Sustainable Development in Tunisia," Post-Print halshs-01070616, HAL.
    12. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    13. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    14. Kumar, S. & Shrestha, Pujan & Abdul Salam, P., 2013. "A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 822-836.
    15. Omri, Emna & Chtourou, Nouri & Bazin, Damien, 2015. "Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1312-1323.
    16. Tolón-Becerra, A. & Lastra-Bravo, X.B. & Steenberghen, T. & Debecker, B., 2011. "Current situation, trends and potential of renewable energy in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4400-4409.
    17. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    18. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    19. Hao, Xiaoli & Zhang, Guoqiang & Chen, Youming, 2007. "Role of BCHP in energy and environmental sustainable development and its prospects in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1827-1842, October.
    20. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3552-3564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.