IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i7p3384-3393.html
   My bibliography  Save this article

Estimates of GHG emission reduction potential by country, sector, and cost

Author

Listed:
  • Akimoto, Keigo
  • Sano, Fuminori
  • Homma, Takashi
  • Oda, Junichiro
  • Nagashima, Miyuki
  • Kii, Masanobu

Abstract

In this study, emission reduction potentials in greenhouse gases (GHG) are assessed by country, sector, and cost using a GHG emission reduction assessment model with high resolutions with respect to region and technology and high consistency in terms of assumptions, interrelationships, and solution principles. Model analyses show that large potential reductions can be achieved at low cost in developing countries and power sectors. In addition, cost-efficient emission reductions were evaluated for some international emission reduction targets that have been derived on the basis of the principle of common but differentiated responsibilities among developed and developing countries. If (1) emission reduction measures at negative costs and below 50Â $/tCO2 for developed countries, (2) intensity improvement measures for selected sectors at negative costs and below 20Â $/tCO2 for major developing countries, and (3) all emission reduction measures with negative costs for other developing countries in 2020 are adopted, then emission reductions of 8.9, 14.8, and 27.7Â GtCO2Â eq./yr compared to the technology-frozen case can be expected in developed countries, major developing countries, and globally, corresponding to a 11% decrease, 40% increase, and 17% increase from 2005 levels, respectively. Large-scale emission reductions can be achieved even if CO2-intensity targets for major sectors are assumed for major developing countries.

Suggested Citation

  • Akimoto, Keigo & Sano, Fuminori & Homma, Takashi & Oda, Junichiro & Nagashima, Miyuki & Kii, Masanobu, 2010. "Estimates of GHG emission reduction potential by country, sector, and cost," Energy Policy, Elsevier, vol. 38(7), pages 3384-3393, July.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3384-3393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00093-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keigo Akimoto & Fuminori Sano & Junichiro Oda & Takashi Homma & Ullash Kumar Rout & Toshimasa Tomoda, 2008. "Global emission reductions through a sectoral intensity target scheme," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 46-59, December.
    2. Oda, Junichiro & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2007. "Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector," Energy Economics, Elsevier, vol. 29(4), pages 868-888, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sano, Fuminori & Wada, Kenichi & Akimoto, Keigo & Oda, Junichiro, 2015. "Assessments of GHG emission reduction scenarios of different levels and different short-term pledges through macro- and sectoral decomposition analyses," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 153-165.
    2. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    3. Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Energy: Resources and Markets 162379, Fondazione Eni Enrico Mattei (FEEM).
    4. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    5. Joseph E. Aldy & William A. Pizer & Keigo Akimoto, 2017. "Comparing emissions mitigation efforts across countries," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 501-515, May.
    6. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    7. Rout, Ullash K. & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi & Tomoda, Toshimasa, 2008. "Impact assessment of the increase in fossil fuel prices on the global energy system, with and without CO2 concentration stabilization," Energy Policy, Elsevier, vol. 36(9), pages 3477-3484, September.
    8. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa, 2013. "Long-term global availability of steel scrap," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 81-91.
    9. Wada, Kenichi & Sano, Fuminori & Akimoto, Keigo & Homma, Takashi, 2012. "Assessment of Copenhagen pledges with long-term implications," Energy Economics, Elsevier, vol. 34(S3), pages 481-486.
    10. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    11. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    12. Stefan Vögele & Dirk Rübbelke & Kristina Govorukha & Matthias Grajewski, 2020. "Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany," Climatic Change, Springer, vol. 162(4), pages 1763-1778, October.
    13. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
    14. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
    15. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
    16. Davood Askarany & Hassan Yazdifar & Kevin Dow, 2021. "B2B Networking, Renewable Energy, and Sustainability," JRFM, MDPI, vol. 14(7), pages 1-13, June.
    17. Okazaki, Teruo & Yamaguchi, Mitsutsune, 2011. "Accelerating the transfer and diffusion of energy saving technologies steel sector experience--Lessons learned," Energy Policy, Elsevier, vol. 39(3), pages 1296-1304, March.
    18. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    19. Liu, Xiaoping & Ou, Jinpei & Chen, Yimin & Wang, Shaojian & Li, Xia & Jiao, Limin & Liu, Yaolin, 2019. "Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures," Applied Energy, Elsevier, vol. 238(C), pages 1163-1178.
    20. Keigo Akimoto & Fuminori Sano & Ayami Hayashi & Takashi Homma & Junichiro Oda & Kenichi Wada & Miyuki Nagashima & Kohko Tokushige & Toshimasa Tomoda, 2012. "Consistent assessments of pathways toward sustainable development and climate stabilization," Natural Resources Forum, Blackwell Publishing, vol. 36(4), pages 231-244, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3384-3393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.