A support vector machine approach to estimate global solar radiation with the influence of fog and haze
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.05.069
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
- Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
- Chen, Ji-Long & Liu, Hong-Bin & Wu, Wei & Xie, De-Ti, 2011. "Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study," Renewable Energy, Elsevier, vol. 36(1), pages 413-420.
- Said, R. & Mansor, M. & Abuain, T., 1998. "Estimation of global and diffuse radiation at Tripoli," Renewable Energy, Elsevier, vol. 14(1), pages 221-227.
- Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A comparative study to estimate daily diffuse solar radiation over India," Energy, Elsevier, vol. 34(11), pages 1792-1796.
- Rusen, Selmin Ener & Hammer, Annette & Akinoglu, Bulent G., 2013. "Coupling satellite images with surface measurements of bright sunshine hours to estimate daily solar irradiation on horizontal surface," Renewable Energy, Elsevier, vol. 55(C), pages 212-219.
- Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
- Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
- Adaramola, Muyiwa S., 2012. "Estimating global solar radiation using common meteorological data in Akure, Nigeria," Renewable Energy, Elsevier, vol. 47(C), pages 38-44.
- Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
- Will, A. & Bustos, J. & Bocco, M. & Gotay, J. & Lamelas, C., 2013. "On the use of niching genetic algorithms for variable selection in solar radiation estimation," Renewable Energy, Elsevier, vol. 50(C), pages 168-176.
- Elagib, N.a. & Alvi, S.H. & Mansell, M.G., 1999. "Correlationships between clearness index and relative sunshine duration for Sudan," Renewable Energy, Elsevier, vol. 17(4), pages 473-498.
- Trabea, A.A. & Shaltout, M.A.Mosalam, 2000. "Correlation of global solar radiation with meteorological parameters over Egypt," Renewable Energy, Elsevier, vol. 21(2), pages 297-308.
- Salcedo-Sanz, S. & Jiménez-Fernández, S. & Aybar-Ruiz, A. & Casanova-Mateo, C. & Sanz-Justo, J. & García-Herrera, R., 2017. "A CRO-species optimization scheme for robust global solar radiation statistical downscaling," Renewable Energy, Elsevier, vol. 111(C), pages 63-76.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Johanna Karina Solano Meza & David Orjuela Yepes & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero, 2023. "Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
- Wang, Yong & Ma, Yinjie & Xie, Deyi & Yu, Zhenhuan & E, Jiaqiang, 2021. "Numerical study on the influence of gasoline properties and thermodynamic conditions on premixed laminar flame velocity at multiple conditions," Energy, Elsevier, vol. 233(C).
- Kisi, Ozgur & Heddam, Salim & Yaseen, Zaher Mundher, 2019. "The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model," Applied Energy, Elsevier, vol. 241(C), pages 184-195.
- Zhao, Shuting & Wu, Lifeng & Xiang, Youzhen & Dong, Jianhua & Li, Zhen & Liu, Xiaoqiang & Tang, Zijun & Wang, Han & Wang, Xin & An, Jiaqi & Zhang, Fucang & Li, Zhijun, 2022. "Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 1049-1064.
- Li, Fen & Lin, Yilun & Guo, Jianping & Wang, Yue & Mao, Ling & Cui, Yang & Bai, Yongqing, 2020. "Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification," Renewable Energy, Elsevier, vol. 157(C), pages 1222-1232.
- Tan, Yunhui & Wang, Quan & Zhang, Zhaoyang, 2023. "Near-real-time estimation of global horizontal irradiance from Himawari-8 satellite data," Renewable Energy, Elsevier, vol. 215(C).
- Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
- Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
- Yao, Wanxiang & Zheng, Zhimiao & Zhao, Jun & Wang, Xiao & Wang, Yan & Li, Xianli & Fu, Jidong, 2020. "The factor analysis of fog and haze under the coupling of multiple factors -- taking four Chinese cities as an example," Energy Policy, Elsevier, vol. 137(C).
- Zhao, Qun & Yao, Wanxiang & Zhang, Chunxiao & Wang, Xiao & Wang, Yan, 2019. "Study on the influence of fog and haze on solar radiation based on scattering-weakening effect," Renewable Energy, Elsevier, vol. 134(C), pages 178-185.
- Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.
- Su, Gang & Zhang, Shuangyang & Hu, Mengru & Yao, Wanxiang & Li, Ziwei & Xi, Yue, 2022. "The modified layer-by-layer weakening solar radiation models based on relative humidity and air quality index," Energy, Elsevier, vol. 239(PE).
- Yao, Wanxiang & Song, Mengjia & Huang, Yu & Xu, Puyan & Li, Xianli & Su, Gang & Gao, Weijun, 2024. "A new anisotropic solar radiation model based on the principle of photothermal integration," Renewable Energy, Elsevier, vol. 226(C).
- Fatemeh Rezaie & Mahdi Panahi & Sayed M. Bateni & Changhyun Jun & Christopher M. U. Neale & Saro Lee, 2022. "Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1247-1283, November.
- Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
- Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.
- Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
- Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
- Zhao, Qun & Yao, Wanxiang & Zhang, Chunxiao & Wang, Xiao & Wang, Yan, 2019. "Study on the influence of fog and haze on solar radiation based on scattering-weakening effect," Renewable Energy, Elsevier, vol. 134(C), pages 178-185.
- Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
- Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
- Makade, Rahul G. & Jamil, Basharat, 2018. "Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 22-43.
- Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
- Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
- Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
- Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
- Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
- Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
- Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
- Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
- Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
- Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
- Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
More about this item
Keywords
Support vector machines; Global solar radiation; Fog and haze; Air quality index;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:128:y:2018:i:pa:p:155-162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.