Modeling and simulating the transcritical CO2 heat pump system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.09.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Jun Lan & Ma, Yi Tai & Liu, Sheng Chun, 2007. "Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander," Energy, Elsevier, vol. 32(3), pages 237-245.
- Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
- Yokoyama, Ryohei & Wakui, Tetsuya & Kamakari, Junya & Takemura, Kazuhisa, 2010. "Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand," Energy, Elsevier, vol. 35(2), pages 718-728.
- Sarkar, Jahar, 2008. "Optimization of ejector-expansion transcritical CO2 heat pump cycle," Energy, Elsevier, vol. 33(9), pages 1399-1406.
- Yokoyama, Ryohei & Shimizu, Takeshi & Ito, Koichi & Takemura, Kazuhisa, 2007. "Influence of ambient temperatures on performance of a CO2 heat pump water heating system," Energy, Elsevier, vol. 32(4), pages 388-398.
- Richter, M.R. & Song, S.M. & Yin, J.M. & Kim, M.H. & Bullard, C.W. & Hrnjak, P.S., 2003. "Experimental results of transcritical CO2 heat pump for residential application," Energy, Elsevier, vol. 28(10), pages 1005-1019.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ge, Y.T. & Tassou, S.A. & Santosa, I. Dewa & Tsamos, K., 2015. "Design optimisation of CO2 gas cooler/condenser in a refrigeration system," Applied Energy, Elsevier, vol. 160(C), pages 973-981.
- Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
- Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
- Livio de Santoli & Gianluigi Lo Basso & Davide Astiaso Garcia & Giuseppe Piras & Giulia Spiridigliozzi, 2019. "Dynamic Simulation Model of Trans-Critical Carbon Dioxide Heat Pump Application for Boosting Low Temperature Distribution Networks in Dwellings," Energies, MDPI, vol. 12(3), pages 1-20, February.
- Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
- Ohkura, Masashi & Yokoyama, Ryohei & Nakamata, Takuya & Wakui, Tetsuya, 2015. "Numerical analysis on performance enhancement of a CO2 heat pump water heating system by extracting tepid water," Energy, Elsevier, vol. 87(C), pages 435-447.
- Zhili, Sun & Minxia, Li & Guangming, Han & Yitai, Ma, 2013. "Performance study of a transcritical carbon dioxide cycle with an expressor," Energy, Elsevier, vol. 60(C), pages 77-86.
- Yap, Ken Shaun & Ooi, Kim Tiow & Chakraborty, Anutosh, 2018. "Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study," Energy, Elsevier, vol. 145(C), pages 626-637.
- Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
- Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
- Wang, Jijin & Qv, Dehu & Yao, Yang & Ni, Long, 2021. "The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study," Energy, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
- Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
- Yari, Mortaza & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources," Energy, Elsevier, vol. 61(C), pages 646-656.
- Yari, M. & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Simulation study of the combination of absorption refrigeration and ejector-expansion systems," Renewable Energy, Elsevier, vol. 60(C), pages 370-381.
- Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
- Aprea, Ciro & Maiorino, Angelo, 2009. "Heat rejection pressure optimization for a carbon dioxide split system: An experimental study," Applied Energy, Elsevier, vol. 86(11), pages 2373-2380, November.
- Zhili, Sun & Minxia, Li & Guangming, Han & Yitai, Ma, 2013. "Performance study of a transcritical carbon dioxide cycle with an expressor," Energy, Elsevier, vol. 60(C), pages 77-86.
- Ohkura, Masashi & Yokoyama, Ryohei & Nakamata, Takuya & Wakui, Tetsuya, 2015. "Numerical analysis on performance enhancement of a CO2 heat pump water heating system by extracting tepid water," Energy, Elsevier, vol. 87(C), pages 435-447.
- Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
- Benlin Shi & Muqing Chen & Weikai Chi & Qichao Yang & Guangbin Liu & Yuanyang Zhao & Liansheng Li, 2022. "Effects of Internal Heat Exchanger on Two-Stage Compression Trans-Critical CO 2 Refrigeration Cycle Combined with Expander and Intercooling," Energies, MDPI, vol. 16(1), pages 1-16, December.
- Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
- Bo Zhang & Liu Chen & Lang Liu & Xiaoyan Zhang & Mei Wang & Changfa Ji & KI-IL Song, 2018. "Parameter Sensitivity Study for Typical Expander-Based Transcritical CO 2 Refrigeration Cycles," Energies, MDPI, vol. 11(5), pages 1-20, May.
- Lu, Yuanwei & He, Wei & Wu, Yuting & Ji, Weining & Ma, Chongfang & Guo, Hang, 2013. "Performance study on compressed air refrigeration system based on single screw expander," Energy, Elsevier, vol. 55(C), pages 762-768.
- Zeng, Min-Qiang & Zheng, Qiu-Yun & Zhang, Xue-Lai & Mo, Fan-Yang & Zhang, Xin-Rong, 2022. "Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection," Energy, Elsevier, vol. 259(C).
- Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
- Goto, Hisanori & Goto, Mika & Sueyoshi, Toshiyuki, 2011. "Consumer choice on ecologically efficient water heaters: Marketing strategy and policy implications in Japan," Energy Economics, Elsevier, vol. 33(2), pages 195-208, March.
- Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
- Tao, Y.B. & He, Y.L. & Tao, W.Q., 2010. "Exergetic analysis of transcritical CO2 residential air-conditioning system based on experimental data," Applied Energy, Elsevier, vol. 87(10), pages 3065-3072, October.
- Yokoyama, Ryohei & Wakui, Tetsuya & Kamakari, Junya & Takemura, Kazuhisa, 2010. "Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand," Energy, Elsevier, vol. 35(2), pages 718-728.
More about this item
Keywords
Transcritical CO2 system; Heat pump; Simulation; Expander; Modeling;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4812-4818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.