IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4973-d857771.html
   My bibliography  Save this article

Exergy Efficiency and COP Improvement of a CO 2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine

Author

Listed:
  • Abbas Aghagoli

    (Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada)

  • Mikhail Sorin

    (Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada)

  • Mohammed Khennich

    (Department of Mechanical Engineering, Université de Moncton, Moncton, NB E1A3H6, Canada)

Abstract

The heat pump system has been widely used in residential and commercial applications due to its attractive advantages of high energy efficiency, reliability, and environmental impact. The massive exergy loss during the isenthalpic process in the expansion valve is a major drawback of the heat pump system. Therefore, the Tesla turbine exergy analysis in terms of transiting exergy efficiency is investigated and integrated with the transcritical heat pump system. The aim is to investigate the factors that reduce exergy losses and increase the coefficient of performance and exergy efficiency. The contribution of this paper is twofold. First, a three-dimensional numerical analysis of the supercritical CO 2 flow simulation in the Tesla turbine in three different geometries is carried out. Second, the effect of the Tesla turbine on the coefficient of performance and exergy efficiency of the heat pump system is investigated. The effect of the rotor speed and disk spacing on the Tesla turbine power, exergy loss, and transiting exergy efficiency is investigated. The results showed that at a lower disk spacing, the turbine produces higher specific power and transiting exergy efficiency. In addition, the coefficient of performance (COP) and exergy efficiency improvement in the heat pump system combined with the Tesla turbine are 9.8% and 28.9% higher than in the conventional transcritical heat pump system, respectively.

Suggested Citation

  • Abbas Aghagoli & Mikhail Sorin & Mohammed Khennich, 2022. "Exergy Efficiency and COP Improvement of a CO 2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine," Energies, MDPI, vol. 15(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4973-:d:857771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
    2. Thakare, Hitesh R. & Parekh, Ashok D., 2017. "Experimental investigation & CFD analysis of Ranque–Hilsch vortex tube," Energy, Elsevier, vol. 133(C), pages 284-298.
    3. Wenjiao Qi & Qinghua Deng & Zhinan Chi & Lehao Hu & Qi Yuan & Zhenping Feng, 2019. "Influence of Disc Tip Geometry on the Aerodynamic Performance and Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(3), pages 1-23, February.
    4. Rashidi, M.M. & Aghagoli, A. & Raoofi, R., 2017. "Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network," Energy, Elsevier, vol. 129(C), pages 201-215.
    5. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    6. Sahar Taslimi Taleghani & Mikhail Sorin & Sébastien Poncet, 2019. "Analysis and Optimization of Exergy Flows inside a Transcritical CO 2 Ejector for Refrigeration, Air Conditioning and Heat Pump Cycles," Energies, MDPI, vol. 12(9), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    2. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    3. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    4. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
    5. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    6. Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
    7. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    8. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    9. Krzysztof Rusin & Włodzimierz Wróblewski & Sebastian Rulik & Mirosław Majkut & Michał Strozik, 2021. "Performance Study of a Bladeless Microturbine," Energies, MDPI, vol. 14(13), pages 1-18, June.
    10. Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
    11. Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
    12. Bo Zhang & Liu Chen & Lang Liu & Xiaoyan Zhang & Mei Wang & Changfa Ji & KI-IL Song, 2018. "Parameter Sensitivity Study for Typical Expander-Based Transcritical CO 2 Refrigeration Cycles," Energies, MDPI, vol. 11(5), pages 1-20, May.
    13. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    14. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    15. Aprea, Ciro & Maiorino, Angelo, 2009. "Heat rejection pressure optimization for a carbon dioxide split system: An experimental study," Applied Energy, Elsevier, vol. 86(11), pages 2373-2380, November.
    16. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    17. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    18. Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
    19. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    20. Fábrega, F.M. & Rossi, J.S. & d'Angelo, J.V.H., 2010. "Exergetic analysis of the refrigeration system in ethylene and propylene production process," Energy, Elsevier, vol. 35(3), pages 1224-1231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4973-:d:857771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.