IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v370y2024ics0306261924009942.html
   My bibliography  Save this article

Regional-privacy-preserving operation of networked microgrids: Edge-cloud cooperative learning with differentiated policies

Author

Listed:
  • Xia, Qinqin
  • Wang, Yu
  • Zou, Yao
  • Yan, Ziming
  • Zhou, Niancheng
  • Chi, Yuan
  • Wang, Qianggang

Abstract

Privacy preservation and coordination of networked microgrids (NMGs) are conventionally contradictory objectives. To address this, this paper proposes a regional-privacy-preserving operation method for NMGs that collaboratively learns differentiated policy (DP) of each microgrid (MG) at the edge by using a designed federated deep reinforcement learning (FDRL) algorithm. In the proposed method, a scalable edge-cloud cooperative framework is designed to integrate multiple independently controlled regional MGs into the existing distribution network (DN) without affecting its operation model. With the proposed framework, MGs can collaboratively optimize the local operation costs and global DN voltage by the respective regional control agent which controls local distributed energy resources power based on the decentralized partially observable Markov decision process. The proposed framework models differentiated private neural network (NN) models for each MG agent at the edge to efficiently address diverse regional tasks, and models a global NN at the cloud server to achieve collaborative training. The differentiated local policy of each MG control agent is learned via edge computing with the proposed DP-FDRL algorithm, which solves different regional tasks, achieves global coordination, and avoids exchanging the raw energy data among different agents simultaneously. By only transiting the global model parameters during the coordinated training process, the private NN models of each agent at the edge are also preserved to the MGs locally. Numerical studies validate that the proposed framework can effectively handle the complex privacy-preserving NMGs coordinated operation problem with collaborative learning through the DP-FDRL algorithm.

Suggested Citation

  • Xia, Qinqin & Wang, Yu & Zou, Yao & Yan, Ziming & Zhou, Niancheng & Chi, Yuan & Wang, Qianggang, 2024. "Regional-privacy-preserving operation of networked microgrids: Edge-cloud cooperative learning with differentiated policies," Applied Energy, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009942
    DOI: 10.1016/j.apenergy.2024.123611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.