IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v370y2024ics0306261924009942.html
   My bibliography  Save this article

Regional-privacy-preserving operation of networked microgrids: Edge-cloud cooperative learning with differentiated policies

Author

Listed:
  • Xia, Qinqin
  • Wang, Yu
  • Zou, Yao
  • Yan, Ziming
  • Zhou, Niancheng
  • Chi, Yuan
  • Wang, Qianggang

Abstract

Privacy preservation and coordination of networked microgrids (NMGs) are conventionally contradictory objectives. To address this, this paper proposes a regional-privacy-preserving operation method for NMGs that collaboratively learns differentiated policy (DP) of each microgrid (MG) at the edge by using a designed federated deep reinforcement learning (FDRL) algorithm. In the proposed method, a scalable edge-cloud cooperative framework is designed to integrate multiple independently controlled regional MGs into the existing distribution network (DN) without affecting its operation model. With the proposed framework, MGs can collaboratively optimize the local operation costs and global DN voltage by the respective regional control agent which controls local distributed energy resources power based on the decentralized partially observable Markov decision process. The proposed framework models differentiated private neural network (NN) models for each MG agent at the edge to efficiently address diverse regional tasks, and models a global NN at the cloud server to achieve collaborative training. The differentiated local policy of each MG control agent is learned via edge computing with the proposed DP-FDRL algorithm, which solves different regional tasks, achieves global coordination, and avoids exchanging the raw energy data among different agents simultaneously. By only transiting the global model parameters during the coordinated training process, the private NN models of each agent at the edge are also preserved to the MGs locally. Numerical studies validate that the proposed framework can effectively handle the complex privacy-preserving NMGs coordinated operation problem with collaborative learning through the DP-FDRL algorithm.

Suggested Citation

  • Xia, Qinqin & Wang, Yu & Zou, Yao & Yan, Ziming & Zhou, Niancheng & Chi, Yuan & Wang, Qianggang, 2024. "Regional-privacy-preserving operation of networked microgrids: Edge-cloud cooperative learning with differentiated policies," Applied Energy, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009942
    DOI: 10.1016/j.apenergy.2024.123611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Dawei & Xue, Juxing & Zhang, Tingqi & Wang, Jianhong & Sun, Mingyang, 2023. "Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading," Applied Energy, Elsevier, vol. 333(C).
    2. Carissa Véliz & Philipp Grunewald, 2018. "Protecting data privacy is key to a smart energy future," Nature Energy, Nature, vol. 3(9), pages 702-704, September.
    3. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    4. Jendoubi, Imen & Bouffard, François, 2023. "Multi-agent hierarchical reinforcement learning for energy management," Applied Energy, Elsevier, vol. 332(C).
    5. Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    6. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).
    7. Feng, Bin & Liu, Zhuping & Huang, Gang & Guo, Chuangxin, 2023. "Robust federated deep reinforcement learning for optimal control in multiple virtual power plants with electric vehicles," Applied Energy, Elsevier, vol. 349(C).
    8. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Haochi & Qiu, Dawei & Zhang, Liyu & Sun, Mingyang, 2024. "Adaptive multi-agent reinforcement learning for flexible resource management in a virtual power plant with dynamic participating multi-energy buildings," Applied Energy, Elsevier, vol. 374(C).
    2. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    3. Pinthurat, Watcharakorn & Surinkaew, Tossaporn & Hredzak, Branislav, 2024. "An overview of reinforcement learning-based approaches for smart home energy management systems with energy storages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    5. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    6. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    7. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    8. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    9. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    10. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    11. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    12. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
    13. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    14. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    15. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    16. Cheng, Xiu & Li, Wenbo & Yang, Jiameng & Zhang, Linling, 2023. "How convenience and informational tools shape waste separation behavior: A social network approach," Resources Policy, Elsevier, vol. 86(PB).
    17. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    18. Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2017. "Securing highly penetrated wind energy systems using linearized transmission switching mechanism," Applied Energy, Elsevier, vol. 190(C), pages 1207-1220.
    19. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    20. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.