IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019366.html
   My bibliography  Save this article

Multi-swarm multi-tasking ensemble learning for multi-energy demand prediction

Author

Listed:
  • Song, Hui
  • Zhang, Boyu
  • Jalili, Mahdi
  • Yu, Xinghuo

Abstract

The increasing uptake of renewable energy sources leads to more uncertainties of energy scheduling, resulting in more difficulties of energy demand management in smart grid. Accurate forecasting plays a significant role in energy management, and in some cases it may involve predictions of different consumers or geographic regions. Traditionally, these prediction problems have been solved independently, ignoring the potential shared knowledge among them that may help facilitate the overall performance. In this manuscript, we propose a multi-swarm multi-tasking ensemble learning (MSMTEL) framework for solving the energy demand forecasting across multiple cities. The proposed method comprises single-task pretraining, multi-task optimization (MTO), and ensemble learning (EL). For each prediction task, several subtasks are generated based on predefined parameters in the forecasting model. Each subtask utilizes an independent deep neural network (DNN) as the predictor, which is pretrained individually. Subsequently, we modify the dynamic multi-swarm particle swarm optimization (DMS-PSO) as a customized multi-swarm PSO (CMS-PSO) algorithm for implementing MTO. Each subswarm in CMS-PSO focuses on finding the optimal model knowledge (pretrained DNN weights and biases) of source tasks (all subtasks) to be reused by the target subtask. Finally, instead of choosing the best forecasting among the subtasks, results of subtasks over the same energy prediction problem are combined to yield the EL result, wherein weight coefficients determining the contributions of subtasks to EL are optimized by PSO. MSMTEL is evaluated against single-task learning (STL) and MTO to demonstrate its superior performance.

Suggested Citation

  • Song, Hui & Zhang, Boyu & Jalili, Mahdi & Yu, Xinghuo, 2025. "Multi-swarm multi-tasking ensemble learning for multi-energy demand prediction," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019366
    DOI: 10.1016/j.apenergy.2024.124553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    2. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    3. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    4. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    5. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    6. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
    8. Zheng, Jianqin & Du, Jian & Wang, Bohong & Klemeš, Jiří Jaromír & Liao, Qi & Liang, Yongtu, 2023. "A hybrid framework for forecasting power generation of multiple renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    9. Yang, Yiran & Li, Gang & Luo, Tao & Al-Bahrani, Mohammed & Al-Ammar, Essam A. & Sillanpaa, Mika & Ali, Shafaqat & Leng, Xiujuan, 2023. "The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks," Energy, Elsevier, vol. 268(C).
    10. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Xianzhou & Luo, Yongqiang & Yuan, Shuo & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2025. "Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information," Applied Energy, Elsevier, vol. 377(PB).
    2. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
    3. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    4. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    5. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    6. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    7. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    8. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    9. Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
    10. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    11. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    12. Niraj Buyo & Akbar Sheikh-Akbari & Farrukh Saleem, 2025. "An Ensemble Approach to Predict a Sustainable Energy Plan for London Households," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
    13. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    14. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    15. Yang, Mao & Guo, Yunfeng & Huang, Tao & Fan, Fulin & Ma, Chenglian & Fang, Guozhong, 2024. "Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods," Energy, Elsevier, vol. 312(C).
    16. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    17. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    18. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    19. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    20. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.