IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924019639.html
   My bibliography  Save this article

Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information

Author

Listed:
  • Dong, Xianzhou
  • Luo, Yongqiang
  • Yuan, Shuo
  • Tian, Zhiyong
  • Zhang, Limao
  • Wu, Xiaoying
  • Liu, Baobing

Abstract

Accurate prediction of building electricity load is essential for grid management and building optimization operations. This paper proposes a novel approach based on spatiotemporal correlations and electricity consumption behavior information. The K-Medoids algorithm and the Derivative Dynamic Time Warping (DDTW) distance are employed to explore the correlation between electricity consumption behaviors among different partitions and floors. Different partitions and floors are clustered and grouped, followed by modifying the adjacency matrix with electricity consumption behaviors. The hybrid model and K-Medoids-LSTM model are proposed separately for clusterable nodes and non-clustered nodes. For clusterable nodes, spatial-temporal features are extracted, trained, and predicted with the hybrid model based on graph neural networks (GNNs) and LSTM models. A K-Medoids-LSTM model based on the K-Medoids algorithm is proposed to predict the electricity load of the non-clustered nodes. To explore the model's practicality, we predicted the building electrical load under different dataset sizes. The model achieves an R2 above 0.89, and the MAE, MSE, and RMSE of the GCN-LSTM and GAT-LSTM models all remain below 0.1, indicating strong predictive capabilities. The results demonstrate that, without relying on other external features, the proposed method can accurately predict the building electricity load for different partitions and floors simultaneously.

Suggested Citation

  • Dong, Xianzhou & Luo, Yongqiang & Yuan, Shuo & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2025. "Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019639
    DOI: 10.1016/j.apenergy.2024.124580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.