IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924011607.html
   My bibliography  Save this article

A wind speed forecasting framework for multiple turbines based on adaptive gate mechanism enhanced multi-graph attention networks

Author

Listed:
  • Wang, Yufeng
  • Yang, Zihan
  • Ma, Jianhua
  • Jin, Qun

Abstract

Accurately forecasting wind speed is crucial for efficiently utilizing wind energy and scheduling power grids. Recently, Graph Neural Network (GNN) models have been widely utilized to forecast wind speed, which explicitly utilizes the correlation between turbine sites in a wind farm. However, it is challenging to appropriately construct graphs to characterize multiple latent but unknown interdependencies among turbines. This paper proposes a novel multi-site wind speed forecasting framework AG-MGAT, based on an adaptive gate mechanism enhanced multi-graph attention networks. In detail, the contributions of our work are threefold. Firstly, multiple graphs are explicitly constructed, which respectively measure the wind behavioral similarity and the directional causality between turbine sites. Secondly, to calibrate the potential misalignment of spatial-temporal GNNs using these task-agnostic graphs, an adaptive gate mechanism enhanced Graph Attention Network (GAT), AG-GAT, is innovatively designed, which uses a learnable adjacency matrix as gate to adaptively weight the sites' embeddings from the current GAT layer and these directly from the previous AG-GAT layer. At each timestep, the proposed AG-GATs working on the constructed graphs are used to extract the turbine sites' representations that embed the multiple correlations among sites, which are then sent to recurrent neural network for further processing the temporal interdependency. Finally, thorough experiments on real wind speed dataset are conducted and the experimental results show the superiority of our schemes over other state-of-the-art GNN-based forecasting schemes.

Suggested Citation

  • Wang, Yufeng & Yang, Zihan & Ma, Jianhua & Jin, Qun, 2024. "A wind speed forecasting framework for multiple turbines based on adaptive gate mechanism enhanced multi-graph attention networks," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011607
    DOI: 10.1016/j.apenergy.2024.123777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    2. Zhang, Yi-Ming & Wang, Hao, 2023. "Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting," Energy, Elsevier, vol. 278(PA).
    3. Geng, Xiulin & Xu, Lingyu & He, Xiaoyu & Yu, Jie, 2021. "Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting," Renewable Energy, Elsevier, vol. 180(C), pages 1014-1025.
    4. Joseph, Lionel P. & Deo, Ravinesh C. & Prasad, Ramendra & Salcedo-Sanz, Sancho & Raj, Nawin & Soar, Jeffrey, 2023. "Near real-time wind speed forecast model with bidirectional LSTM networks," Renewable Energy, Elsevier, vol. 204(C), pages 39-58.
    5. Wu, Qiang & Zheng, Hongling & Guo, Xiaozhu & Liu, Guangqiang, 2022. "Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks," Renewable Energy, Elsevier, vol. 199(C), pages 977-992.
    6. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Yelin Wang & Ping Yang & Shunyu Zhao & Julien Chevallier & Qingtai Xiao, 2023. "A hybrid intelligent framework for forecasting short-term hourly wind speed based on machine learning," Post-Print halshs-04250325, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhengganzhe & Zhang, Bin & Du, Chenglong & Meng, Wei & Meng, Anbo, 2024. "A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction," Energy, Elsevier, vol. 294(C).
    2. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    3. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    4. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    5. Boudy Bilal & Kaan Yetilmezsoy & Mohammed Ouassaid, 2024. "Benchmarking of Various Flexible Soft-Computing Strategies for the Accurate Estimation of Wind Turbine Output Power," Energies, MDPI, vol. 17(3), pages 1-36, February.
    6. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    7. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    8. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    9. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    10. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    11. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    12. Wu, Tangjie & Ling, Qiang, 2024. "Self-supervised dynamic stochastic graph network for spatio-temporal wind speed forecasting," Energy, Elsevier, vol. 304(C).
    13. Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
    14. Zhu, Nanyang & Wang, Ying & Yuan, Kun & Yan, Jiahao & Li, Yaping & Zhang, Kaifeng, 2024. "GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations," Applied Energy, Elsevier, vol. 364(C).
    15. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    16. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Fan & Hu, Qinghua, 2024. "Dynamic non-constraint ensemble model for probabilistic wind power and wind speed forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    17. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    18. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    19. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    20. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.