IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018804.html
   My bibliography  Save this article

Synergizing low-carbon planning and operation for sustainable integrated refinery-petrochemical processes under arrival time uncertainty: A large-scale hierarchical energy-efficiency optimization perspective

Author

Listed:
  • Zhang, Tingwei
  • Shen, Feifei
  • Li, Zhi
  • Peng, Xin
  • Zhong, Weimin

Abstract

Neglecting interaction among the planning and operational layers in the integrated refinery-petrochemical process can seriously compress low-carbon decision schemes’ accuracy and global applicability. Accordingly, this paper constructs a multi-layer joint low-carbon production decision-making model to facilitate the interaction among the planning and operational layers. Considering the crude carrier arrival delays and raw materials arrival time uncertainties, a multi-period decomposition operation of production planning is conducted. Synchronizing the number of raw materials arrivals at the site with the number of planning cycles ensures information flow interactability. Subsequently, a hierarchical synchronization optimization framework is developed to mitigate the complexity and problem-solving difficulty of the joint decision optimization model. Additionally, a personalized problem-solving strategy that concurrently covers the carbon tax scenario and an improved optimization algorithm is designed to improve the efficiency of solving decomposed local optimization problems. The proposed model and methods are applied to a case study in a practical integrated refinery-petrochemical production site. The results indicate that the joint low-carbon production decision optimization model can effectively explore the energy-saving and emission-reduction potential at the planning and operational layers. After optimization, CO2 emissions are reduced from 1048.69 ktCO2eq/month to 987.19 kt CO2eq/month (a 5.9% reduction), and energy consumption decreased from 61520.2 tce/month to 54645.8 tce/month (an 11.2% reduction). The proposed model and methodology can serve as a foundational and optimization support for low-carbon production decision-making in integrated refinery-petrochemical processes.

Suggested Citation

  • Zhang, Tingwei & Shen, Feifei & Li, Zhi & Peng, Xin & Zhong, Weimin, 2025. "Synergizing low-carbon planning and operation for sustainable integrated refinery-petrochemical processes under arrival time uncertainty: A large-scale hierarchical energy-efficiency optimization pers," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018804
    DOI: 10.1016/j.apenergy.2024.124497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    2. Yeo, Lip Siang & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Wong, Yat Choy & Sunarso, Jaka & How, Bing Shen, 2022. "Sequential optimization of process and supply chains considering re-refineries for oil and gas circularity," Applied Energy, Elsevier, vol. 322(C).
    3. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    4. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    5. Wang, Yongli & Huang, Feifei & Tao, Siyi & Ma, Yang & Ma, Yuze & Liu, Lin & Dong, Fugui, 2022. "Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy," Applied Energy, Elsevier, vol. 306(PB).
    6. Shan, Zijing & Tan, Qinliang & Dong, Haoxin & Ding, Yihong, 2024. "Optimization model of low-carbon technology adoption timing for coal power under decarbonization and flexibility demand: Empirical study in Beijing-Tianjin-Hebei region, China," Applied Energy, Elsevier, vol. 358(C).
    7. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2023. "Two-timescale autonomous energy management strategy based on multi-agent deep reinforcement learning approach for residential multicarrier energy system," Applied Energy, Elsevier, vol. 351(C).
    9. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    10. Tu, Renfu & Jiao, Yingqi & Qiu, Rui & Liao, Qi & Xu, Ning & Du, Jian & Liang, Yongtu, 2023. "Energy saving and consumption reduction in the transportation of petroleum products: A pipeline pricing optimization perspective," Applied Energy, Elsevier, vol. 342(C).
    11. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2024. "Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems," Energy, Elsevier, vol. 286(C).
    12. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    2. Zhang, Rongquan & Bu, Siqi & Li, Gangqiang, 2024. "Multi-market P2P trading of cooling–heating-power-hydrogen integrated energy systems: An equilibrium-heuristic online prediction optimization approach," Applied Energy, Elsevier, vol. 367(C).
    3. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    4. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    5. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    6. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    7. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    8. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    9. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    10. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    11. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    12. Burleyson, Casey D. & Rahman, Aowabin & Rice, Jennie S. & Smith, Amanda D. & Voisin, Nathalie, 2021. "Multiscale effects masked the impact of the COVID-19 pandemic on electricity demand in the United States," Applied Energy, Elsevier, vol. 304(C).
    13. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    14. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    15. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    16. Giovanni Gino Zanvettor & Marco Casini & Antonio Vicino, 2024. "Optimal Operation of Energy Storage Facilities in Incentive-Based Energy Communities," Energies, MDPI, vol. 17(11), pages 1-20, May.
    17. Li, Zhiwei & Zhao, Yuze & Wu, Pei & Zhang, Hao & Dong, Nayang & Chang, Yuanyuan & Du, Yudong, 2024. "Enhancing efficiency and economy of hydrogen-based integrated energy system: A green dispatch approach based on exergy analysis," Energy, Elsevier, vol. 310(C).
    18. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    19. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
    20. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.