IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics030626192401290x.html
   My bibliography  Save this article

High-resolution spatio-temporal estimation of CO2 emissions from China's civil aviation industry

Author

Listed:
  • Lu, Binbin
  • Dong, Jintao
  • Wang, Chun
  • Sun, Huabo
  • Yao, Hongyu

Abstract

Emissions of carbon dioxide (CO2), as for different sectors have drawn increasingly attentions due to carbon peaking and neutrality goals. In the transportation sector, civil aviation industry is an important emission source. In this study, we proposed a technical framework to accurately estimate high-resolution spatio-temporal CO2 emissions from all the domestic flights within the Chinese mainland. In this solution, both quick access recorder (QAR) and flight schedule data were adopted. The QAR data provide the details of fuel consumptions during a flight and is used to train an accurate estimation model, while the flight schedule data enable us to estimate large scale CO2 emissions with both spatial and temporal details. With this technical framework, we calculated the total, yearly, monthly and daily CO2 emissions of domestic civil aviation industry within Chinese mainland from 2018 to 2021, with a spatial resolution up to 0.1°×0.1°×1000feet. The results have been validated with uncertainty analysis and comparison to the data provided by CarbonMonitor, and acquired apparent advantages in spatio-temporal accuracies and interpretabilities.

Suggested Citation

  • Lu, Binbin & Dong, Jintao & Wang, Chun & Sun, Huabo & Yao, Hongyu, 2024. "High-resolution spatio-temporal estimation of CO2 emissions from China's civil aviation industry," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401290x
    DOI: 10.1016/j.apenergy.2024.123907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401290X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    2. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    3. Wang, Lei & Wu, Changxu & Sun, Ruishan, 2014. "An analysis of flight Quick Access Recorder (QAR) data and its applications in preventing landing incidents," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Yi Ai, 2024. "Research on the Carbon Emission Prediction and Reduction Strategies for the Civil Aviation Industry in China: A System Dynamics Approach," Sustainability, MDPI, vol. 16(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    2. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    3. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    4. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    5. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.
    6. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Jia, Min & Zhang, Zhe & Zhang, Li & Zhao, Liang & Lu, Xinbo & Li, Linyan & Ruan, Jianhui & Wu, Yunlong & He, Zhuoming & Liu, Mei & Jiang, Lingling & Gao, Yajing & Wu, Pengcheng & Zhu, Shuying & Niu, M, 2024. "Optimization of electricity generation and assessment of provincial grid emission factors from 2020 to 2060 in China," Applied Energy, Elsevier, vol. 373(C).
    8. Yuanying Chi & Wenbing Zhou & Songlin Tang & Yu Hu, 2022. "Driving Factors of CO 2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model," Energies, MDPI, vol. 15(7), pages 1-15, April.
    9. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    10. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    11. Srivastav, Sugandha & Zaehringer, Michael, 2023. "The Economics of Coal Phaseouts," INET Oxford Working Papers 2023-17, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    12. Pan, Shuai & Yu, Wendi & Fulton, Lewis M. & Jung, Jia & Choi, Yunsoo & Gao, H. Oliver, 2023. "Impacts of the large-scale use of passenger electric vehicles on public health in 30 US. metropolitan areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Montrone, Lorenzo & Steckel, Jan Christoph & Kalkuhl, Matthias, 2022. "The type of power capacity matters for economic development – Evidence from a global panel," Resource and Energy Economics, Elsevier, vol. 69(C).
    15. Mark W Wiggins & Jaime Auton & Piers Bayl-Smith & Ann Carrigan, 2020. "Optimising the future of technology in organisations: A human factors perspective," Australian Journal of Management, Australian School of Business, vol. 45(3), pages 449-467, August.
    16. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    17. Mei Li & Gregory Trencher & Jusen Asuka, 2022. "The clean energy claims of BP, Chevron, ExxonMobil and Shell: A mismatch between discourse, actions and investments," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-27, February.
    18. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    19. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    20. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401290x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.