IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924006251.html
   My bibliography  Save this article

Automated detection and tracking of photovoltaic modules from 3D remote sensing data

Author

Listed:
  • Cardoso, Andressa
  • Jurado-Rodríguez, David
  • López, Alfonso
  • Ramos, M. Isabel
  • Jurado, Juan Manuel

Abstract

This study addresses the growing demand for increased performance and reliability of photovoltaic (PV) installations by developing innovative monitoring technologies. The strategy consists of flying an unmanned aerial vehicle (UAV) equipped with a dual camera (RGB and thermal) over the PV plant of interest, followed by the generation of photogrammetric 3D models derived from the overlapped aerial images. The resulting datasets involve orthoimages and point clouds by processing RGB and thermal imagery. The key contribution of this study is twofold: (1) the thermal image mapping on dense and high-resolution point clouds that represent the status and geometry of PV solar modules, and (2) the automatic identification of individual solar panels in 3D space and their thermal characterization along their oriented surface. Then, the vector layer of each PV panel is projected onto the 3D thermal point cloud to extract the thermal values associated with each panel. To evaluate the capability of the proposed method, it was replicated in different scenarios, considering rural and urban environments with different light conditions and PV structures. The results demonstrate the robustness of our method, which achieves a remarkably high detection rate, around 99.12% of true positives, and a low false positive rate, close to 0.88%. Consequently, this method means an advance over previous work by proposing a comprehensive and automated solution for individual and highly detailed monitoring of each solar panel from 3D remotely sensed data. This study opens up new frontier research related to real-time monitoring of photovoltaic modules, an inspection of solar photovoltaic cells, the simulation of solar resources and forecasting, the development of digital twins, solar radiation modelling, and analysis of modular floating solar farms under wave motion.

Suggested Citation

  • Cardoso, Andressa & Jurado-Rodríguez, David & López, Alfonso & Ramos, M. Isabel & Jurado, Juan Manuel, 2024. "Automated detection and tracking of photovoltaic modules from 3D remote sensing data," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924006251
    DOI: 10.1016/j.apenergy.2024.123242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Perez, Oscar, 2018. "Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 566-579.
    2. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    5. Dong Ho Lee & Jong Hwa Park, 2019. "Developing Inspection Methodology of Solar Energy Plants by Thermal Infrared Sensor on Board Unmanned Aerial Vehicles," Energies, MDPI, vol. 12(15), pages 1-14, July.
    6. Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
    7. Aline Kirsten Vidal de Oliveira & Mohammadreza Aghaei & Ricardo Rüther, 2022. "Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared Thermography: A Review," Energies, MDPI, vol. 15(6), pages 1-24, March.
    8. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    9. Yongshi Jie & Xianhua Ji & Anzhi Yue & Jingbo Chen & Yupeng Deng & Jing Chen & Yi Zhang, 2020. "Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification," Energies, MDPI, vol. 13(24), pages 1-19, December.
    10. Roberto Pierdicca & Marina Paolanti & Andrea Felicetti & Fabio Piccinini & Primo Zingaretti, 2020. "Automatic Faults Detection of Photovoltaic Farms: solAIr, a Deep Learning-Based System for Thermal Images," Energies, MDPI, vol. 13(24), pages 1-17, December.
    11. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    12. Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    2. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    3. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    4. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    6. Lu, Ning & Li, Liang & Qin, Jun, 2024. "PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images," Applied Energy, Elsevier, vol. 365(C).
    7. Salim, Daniel Henrique Carneiro & de Sousa Mello, Caio César & Franco, Guilherme Gandra & de Albuquerque Nóbrega, Rodrigo Affonso & de Paula, Eduardo Coutinho & Fonseca, Bráulio Magalhães & Nero, Marc, 2023. "Unveiling Fernando de Noronha Island's photovoltaic potential with unmanned aerial survey and irradiation modeling," Applied Energy, Elsevier, vol. 337(C).
    8. Jingtao Li & Zhixin Li & Yao Wang & Hong Zhang, 2023. "Energy Utilization and Carbon Reduction Potential of Solar Energy in Residential Blocks: A Case Study on a Tropical High-Density City in China," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    9. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Guo, Zhiling & Zhuang, Zhan & Tan, Hongjun & Liu, Zhengguang & Li, Peiran & Lin, Zhengyuan & Shang, Wen-Long & Zhang, Haoran & Yan, Jinyue, 2023. "Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets," Renewable Energy, Elsevier, vol. 219(P1).
    11. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    12. Papargyri, Lamprini & Papanastasiou, Panos & Georghiou, George E., 2022. "Effect of materials and design on PV cracking under mechanical loading," Renewable Energy, Elsevier, vol. 199(C), pages 433-444.
    13. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    14. Meena, Roopmati & Pareek, Arti & Gupta, Rajesh, 2024. "A comprehensive Review on interfacial delamination in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    16. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    17. Guilherme Souza & Ricardo Santos & Erlandson Saraiva, 2022. "A Log-Logistic Predictor for Power Generation in Photovoltaic Systems," Energies, MDPI, vol. 15(16), pages 1-16, August.
    18. Anna Katharina Schnatmann & Tobi Reimers & Erik Hüdepohl & Jonah Umlauf & Pia Kleinebekel & Fabian Schoden & Eva Schwenzfeier-Hellkamp, 2024. "Investigating the Technical Reuse Potential of Crystalline Photovoltaic Modules with Regard to a Recycling Alternative," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    19. Ben Qi & Jingang Liang & Jiejuan Tong, 2023. "Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective," Energies, MDPI, vol. 16(4), pages 1-27, February.
    20. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924006251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.