IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005774.html
   My bibliography  Save this article

GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations

Author

Listed:
  • Zhu, Nanyang
  • Wang, Ying
  • Yuan, Kun
  • Yan, Jiahao
  • Li, Yaping
  • Zhang, Kaifeng

Abstract

Power forecast for each renewable power plant (RPP) in the renewable energy clusters is essential. Though existing graph neural networks (GNN)-based models achieve satisfactory prediction performance by capturing dependencies among distinct RPPs, the static graph structure employed in these models ignores crucial lead-lag correlations among RPPs, resulting from the time difference of the air flow at spatially dispersed RPPs. To address this problem, this paper proposes a novel dynamic graph structure using multiple temporal granularity groups (TGGs) to characterize the lead-lag correlations among RPPs. A granular-based GNN called GGNet is designed to generate an optimal adjacency matrix for the proposed graph structure. Specifically, a two-dimensional convolutional neural network (2D-CNN) is used to quantify the uncertain lead-lag correlations among RPPs; secondly, a gate mechanism is used to calculate a dynamic adjacency matrix; Finally, a graph attention network (GAT) is used to aggregate the information on RPPs based on the well-learned adjacency matrix. Case studies conducted using real-world datasets, with wind power plants and photovoltaic power plants, show our method outperforms state-of-the-art (SoTA) ones with better performance. Compared with the SoTA models, the RMSEN and MAEN of wind power plants for 1–4 h forecast steps decreased on average by 22.925% and 13.18%, respectively; the RMSEN and MAEN of photovoltaic power plants for 1–4 h forecast steps decreased on average by 48.95% and 18.75%, respectively. The results show that the proposed framework can generate improved performance with accuracy and robustness.

Suggested Citation

  • Zhu, Nanyang & Wang, Ying & Yuan, Kun & Yan, Jiahao & Li, Yaping & Zhang, Kaifeng, 2024. "GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005774
    DOI: 10.1016/j.apenergy.2024.123194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fei & Chen, Peng & Zhen, Zhao & Yin, Rui & Cao, Chunmei & Zhang, Yagang & Duić, Neven, 2022. "Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method," Applied Energy, Elsevier, vol. 323(C).
    2. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    3. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    4. Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
    5. Geng, Xiulin & Xu, Lingyu & He, Xiaoyu & Yu, Jie, 2021. "Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting," Renewable Energy, Elsevier, vol. 180(C), pages 1014-1025.
    6. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    7. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    8. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitin Kumar Singh & Masaaki Nagahara, 2024. "LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies, MDPI, vol. 17(17), pages 1-32, September.
    2. Alejandro Garcia-Basurto & Angel Perez-Cruz & Aurelio Dominguez-Gonzalez & Juan J. Saucedo-Dorantes, 2024. "Modeling and Prediction of Carbon Monoxide during the Start-Up in ICE through VARX Regression," Energies, MDPI, vol. 17(11), pages 1-21, May.
    3. Afshin Tatar & Amin Shokrollahi & Abbas Zeinijahromi & Manouchehr Haghighi, 2024. "Deep Learning for Predicting Hydrogen Solubility in n-Alkanes: Enhancing Sustainable Energy Systems," Sustainability, MDPI, vol. 16(17), pages 1-24, August.
    4. Yanan Xue & Jinliang Yin & Xinhao Hou, 2024. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning," Energies, MDPI, vol. 17(13), pages 1-25, July.
    5. Yeeun Moon & Younjeong Lee & Yejin Hwang & Jongpil Jeong, 2024. "Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting," Energies, MDPI, vol. 17(15), pages 1-21, July.
    6. Haoda Ye & Qiuyu Zhu & Xuefan Zhang, 2024. "Short-Term Load Forecasting for Residential Buildings Based on Multivariate Variational Mode Decomposition and Temporal Fusion Transformer," Energies, MDPI, vol. 17(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhengganzhe & Zhang, Bin & Du, Chenglong & Meng, Wei & Meng, Anbo, 2024. "A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction," Energy, Elsevier, vol. 294(C).
    2. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    4. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    5. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    6. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    7. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    8. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    9. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    10. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    12. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
    13. Wang, Huaqing & Tan, Zhongfu & Liang, Yan & Li, Fanqi & Zhang, Zheyu & Ju, Liwei, 2024. "A novel multi-layer stacking ensemble wind power prediction model under Tensorflow deep learning framework considering feature enhancement and data hierarchy processing," Energy, Elsevier, vol. 286(C).
    14. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    15. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    16. Liu, Xin & Yang, Luoxiao & Zhang, Zijun, 2022. "The attention-assisted ordinary differential equation networks for short-term probabilistic wind power predictions," Applied Energy, Elsevier, vol. 324(C).
    17. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    18. Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
    19. Meng, Anbo & Chen, Shun & Ou, Zuhong & Ding, Weifeng & Zhou, Huaming & Fan, Jingmin & Yin, Hao, 2022. "A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization," Energy, Elsevier, vol. 238(PB).
    20. Wang, Lin & Tao, Rui & Hu, Huanling & Zeng, Yu-Rong, 2021. "Effective wind power prediction using novel deep learning network: Stacked independently recurrent autoencoder," Renewable Energy, Elsevier, vol. 164(C), pages 642-655.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.