IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v623y2023ics0378437123003977.html
   My bibliography  Save this article

Knowledge fusion enhanced graph neural network for traffic flow prediction

Author

Listed:
  • Wang, Shun
  • Zhang, Yong
  • Hu, Yongli
  • Yin, Baocai

Abstract

Traffic flow prediction is a very important and challenging task in intelligent transportation systems. There has been a lot of related research work on this issue, especially the application of graph convolutional networks has achieved quite good results. However, the existing methods usually only consider the temporal and spatial dependence in traffic data, and cannot fully explore the implicit semantic relationship from traffic knowledge. To solve this problem, we model the transportation system as topological graphs containing different types of knowledge such as network structure, regional functionality, and traffic flow patterns. We propose a Knowledge Fusion Enhanced Graph Neural Network (KFGNN) module based on multiple graph convolutional networks. Specifically, topological graphs are represented by relation matrices obtained by calculating traffic semantic similarity, and are used as the input of the Graph Convolutional Network(GCN) layer to capture the semantic dependence. The KFGNN module finally fuses these features to obtain a complex semantic representation of the traffic flow. Finally, knowledge fusion enhanced models (KE-TGCN, KE-STGCN and KE-GWN) are proposed to verify the effectiveness and versatility of this module. Experimental results on real-world datasets show that knowledge-enhanced models have higher prediction performance compared with classic GCN-based models.

Suggested Citation

  • Wang, Shun & Zhang, Yong & Hu, Yongli & Yin, Baocai, 2023. "Knowledge fusion enhanced graph neural network for traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
  • Handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123003977
    DOI: 10.1016/j.physa.2023.128842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003977
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Yue & Zhang, Di & Li, Da & Deng, Zhiyuan, 2024. "Regional traffic flow combination prediction model considering virtual space of the road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Meng, Anbo & Zhu, Jianbin & Yan, Baiping & Yin, Hao, 2024. "Day-ahead electricity price prediction in multi-price zones based on multi-view fusion spatio-temporal graph neural network," Applied Energy, Elsevier, vol. 369(C).
    3. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    3. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    4. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    5. Yue-Jun Zhang & Han Zhang, 2023. "Volatility Forecasting of Crude Oil Market: Which Structural Change Based GARCH Models have Better Performance?," The Energy Journal, , vol. 44(1), pages 175-194, January.
    6. Esther Eiling & Raymond Kan & Ali Sharifkhani, 2018. "Sectoral Labor Reallocation and Return Predictability," Working Papers 2018-006, Human Capital and Economic Opportunity Working Group.
    7. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    8. Söderlind, Paul, 2009. "The C-CAPM without ex post data," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 721-729, December.
    9. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    10. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    11. Clark, Todd E. & McCracken, Michael W., 2012. "In-sample tests of predictive ability: A new approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.
    12. Peñaranda, Francisco & Sentana, Enrique, 2016. "Duality in mean-variance frontiers with conditioning information," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 762-785.
    13. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    14. Thomas Nitschka, 2012. "Global and country-specific business cycle risk in time-varying excess returns on asset markets," Working Papers 2012-10, Swiss National Bank.
    15. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    16. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    17. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    18. Shraddha Mishra & Raj Kumar, 2016. "Investigation of overvalued and undervalued stocks: the case of BSE Sensex," International Journal of Business Excellence, Inderscience Enterprises Ltd, vol. 10(2), pages 177-189.
    19. Angelo Aspris & Ester Félez‐Viñas & Sean Foley & Hamish Malloch & Jiri Svec, 2024. "The market risk premium in Australia: Forward‐looking evidence from the options market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(4), pages 3951-3972, December.
    20. David Haab & Thomas Nitschka, 2017. "Predicting returns on asset markets of a small, open economy and the influence of global risks," Working Papers 2017-14, Swiss National Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123003977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.