Knowledge fusion enhanced graph neural network for traffic flow prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2023.128842
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Meng, Anbo & Zhu, Jianbin & Yan, Baiping & Yin, Hao, 2024. "Day-ahead electricity price prediction in multi-price zones based on multi-view fusion spatio-temporal graph neural network," Applied Energy, Elsevier, vol. 369(C).
- Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
- Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Hou, Yue & Zhang, Di & Li, Da & Deng, Zhiyuan, 2024. "Regional traffic flow combination prediction model considering virtual space of the road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Liu, Shan & Li, Ziwei, 2023. "Macroeconomic attention and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 57(C).
- Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
- Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
- Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Esther Eiling & Raymond Kan & Ali Sharifkhani, 2018. "Sectoral Labor Reallocation and Return Predictability," Working Papers 2018-006, Human Capital and Economic Opportunity Working Group.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Risks, MDPI, vol. 6(4), pages 1-18, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
- Söderlind, Paul, 2009.
"The C-CAPM without ex post data,"
Journal of Macroeconomics, Elsevier, vol. 31(4), pages 721-729, December.
- Söderlind, Paul, 2005. "C-CAPM without Ex Post Data," SIFR Research Report Series 39, Institute for Financial Research.
- Söderlind, Paul, 2005. "C-CAPM Without Ex Post Data," CEPR Discussion Papers 5407, C.E.P.R. Discussion Papers.
- Paul Söderlind, 2006. "C-CAPM without Ex Post Data," University of St. Gallen Department of Economics working paper series 2006 2006-22, Department of Economics, University of St. Gallen.
- Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
- Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018.
"Revisiting the forecasting accuracy of Phillips curve: The role of oil price,"
Energy Economics, Elsevier, vol. 70(C), pages 334-356.
- Afees A. Salisu & Idris Ademuyiwa & Kazeem Isah, 2017. "Revisiting the forecasting accuracy of Phillips curve: the role of oil price," Working Papers 022, Centre for Econometric and Allied Research, University of Ibadan.
- Clark, Todd E. & McCracken, Michael W., 2012.
"In-sample tests of predictive ability: A new approach,"
Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.
- Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Working Papers 2009-051, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Research Working Paper RWP 09-10, Federal Reserve Bank of Kansas City.
- Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
- Peñaranda, Francisco & Sentana, Enrique, 2016.
"Duality in mean-variance frontiers with conditioning information,"
Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 762-785.
- Francisco Peñaranda & Enrique Sentana, 2007. "Duality in Mean-Variance Frontiers with Conditioning Information," Working Papers wp2007_0715, CEMFI.
- Sentana, Enrique & Peñaranda, Francisco, 2007. "Duality in Mean-Variance Frontiers with Conditioning Information," CEPR Discussion Papers 6566, C.E.P.R. Discussion Papers.
- Francisco Peñaranda & Enrique Sentana, 2007. "Duality in mean-variance frontiers with conditioning information," Economics Working Papers 1058, Department of Economics and Business, Universitat Pompeu Fabra.
- Fernando M. Duarte & Carlo Rosa, 2015.
"The equity risk premium: a review of models,"
Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
- Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Staff Reports 714, Federal Reserve Bank of New York.
- Dunbar, Kwamie, 2021. "Pricing the hedging factor in the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
- Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
- Dr. Thomas Nitschka, 2012. "Global and country-specific business cycle risk in time-varying excess returns on asset markets," Working Papers 2012-10, Swiss National Bank.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
More about this item
Keywords
Graph neural network; Traffic flow prediction; Knowledge fusion.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123003977. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.