IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920311284.html
   My bibliography  Save this article

A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models

Author

Listed:
  • Morsali, Roozbeh
  • Thirunavukkarasu, Gokul Sidarth
  • Seyedmahmoudian, Mehdi
  • Stojcevski, Alex
  • Kowalczyk, Ryszard

Abstract

Reducing the environmental impacts caused by conventional power sources in smart grids, achieving socio-economic sustainability, and effectively addressing the rapidly increasing energy demand are some of the critical characteristics of demand-side management systems. In this paper, a multi-agent-based decentralised relaxed-constrained energy management strategy for a community-based residential microgrid system using demand-side management is presented. The proposed demand-side management system controls the creative decision-making process of the residential customer agents interconnected within the proposed residential microgrid system. The main objectives of the proposed demand-side management controllers are to make decisions that reduce the peak demand of the load to each agent and to reshape the profile of the power load based on their energy consumption pattern. In addition to this, the novel realistic appliance models with discrete operational levels and on–off capabilities proposed in this research makes the optimisation process a non-convex mixed-integer problem. The proposed decentralised optimisation scheme addressed this issue, by initially relaxing the constraints on the appliances and then using the gradient descent algorithm to decompose and solve the realistic schedules for the devices in the scheduling period. Results indicated that the proposed decentralised relaxed constrain approach is more feasible, effective, economical and efficient in addressing the energy management problem of a residential community microgrid.

Suggested Citation

  • Morsali, Roozbeh & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Stojcevski, Alex & Kowalczyk, Ryszard, 2020. "A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311284
    DOI: 10.1016/j.apenergy.2020.115626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esther, B. Priya & Kumar, K. Sathish, 2016. "A survey on residential Demand Side Management architecture, approaches, optimization models and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 342-351.
    2. Mehdi Seyedmahmoudian & Elmira Jamei & Gokul Sidarth Thirunavukkarasu & Tey Kok Soon & Michael Mortimer & Ben Horan & Alex Stojcevski & Saad Mekhilef, 2018. "Short-Term Forecasting of the Output Power of a Building-Integrated Photovoltaic System Using a Metaheuristic Approach," Energies, MDPI, vol. 11(5), pages 1-23, May.
    3. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    4. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    5. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    6. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    7. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    8. VanDeventer, William & Jamei, Elmira & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Soon, Tey Kok & Horan, Ben & Mekhilef, Saad & Stojcevski, Alex, 2019. "Short-term PV power forecasting using hybrid GASVM technique," Renewable Energy, Elsevier, vol. 140(C), pages 367-379.
    9. Mehdi Seyedmahmoudian & Tey Kok Soon & Elmira Jamei & Gokul Sidarth Thirunavukkarasu & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2018. "Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions Using Bat Algorithm," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    10. Meng, Lexuan & Sanseverino, Eleonora Riva & Luna, Adriana & Dragicevic, Tomislav & Vasquez, Juan C. & Guerrero, Josep M., 2016. "Microgrid supervisory controllers and energy management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1263-1273.
    11. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    12. Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
    13. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashraf Zaghwan & Indra Gunawan, 2021. "Energy Loss Impact in Electrical Smart Grid Systems in Australia," Sustainability, MDPI, vol. 13(13), pages 1-34, June.
    2. Minkyu Kim & Chankook Park, 2021. "Academic Topics Related to Household Energy Consumption Using the Future Sign Detection Technique," Energies, MDPI, vol. 14(24), pages 1-24, December.
    3. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    4. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    5. Inês F. G. Reis & Ivo Gonçalves & Marta A. R. Lopes & Carlos Henggeler Antunes, 2021. "Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach," Energies, MDPI, vol. 14(4), pages 1-32, February.
    6. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    2. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    3. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    5. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    6. Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).
    7. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    8. Mehdi Seyedmahmoudian & Gokul Sidarth Thirunavukkarasu & Elmira Jamei & Tey Kok Soon & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    9. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    10. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    12. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Devine, Mel T. & Bertsch, Valentin, 2018. "Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model," European Journal of Operational Research, Elsevier, vol. 267(2), pages 643-658.
    14. Jimyung Kang & Soonwoo Lee, 2018. "Data-Driven Prediction of Load Curtailment in Incentive-Based Demand Response System," Energies, MDPI, vol. 11(11), pages 1-14, October.
    15. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    17. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    18. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    19. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    20. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.