IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics030626191931894x.html
   My bibliography  Save this article

A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas

Author

Listed:
  • Sun, Yuanyuan
  • Xie, Xiangmin
  • Wang, Qingyan
  • Zhang, Linghan
  • Li, Yahui
  • Jin, Zongshuai

Abstract

With expansion of the urban population, the power consumed by Chinese residential load is increasing rapidly. At the same time, power-electronic devices are widely adopted in home appliances, injecting a great amount of harmonics into the power system, which makes the harmonic problem in residential areas more serious than ever before. In this paper, a bottom-up approach is proposed to evaluate the harmonics of residential energy use. Firstly, a harmonic coupled model is proposed to calculate the harmonics generated by individual nonlinear home appliance. The model directly exhibits the couplings between different order harmonic voltages and currents. Secondly, based on the Markov chain Monte Carlo method, a random usage model is established to determine the usage pattern of home appliances. Various behavioral factors that affect the domestic use of energy in China are considered, and corresponding correction factors are proposed to improve the model accuracy. Thirdly, based on the proposed electrical and random usage models, a bottom-up approach is used to evaluate the harmonics and power of large-scale residential loads. Simulation results are compared with field measurements to verify the accuracy and validity of the proposed method. Furthermore, the proposed methodologies are applied to predict the harmonic generation and power consumption of some rapidly developing harmonic sources such as electric vehicles.

Suggested Citation

  • Sun, Yuanyuan & Xie, Xiangmin & Wang, Qingyan & Zhang, Linghan & Li, Yahui & Jin, Zongshuai, 2020. "A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s030626191931894x
    DOI: 10.1016/j.apenergy.2019.114207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191931894X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    2. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    3. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments," Applied Energy, Elsevier, vol. 90(1), pages 182-188.
    4. Chou, Jui-Sheng & Truong, Ngoc-Son, 2019. "Cloud forecasting system for monitoring and alerting of energy use by home appliances," Applied Energy, Elsevier, vol. 249(C), pages 166-177.
    5. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    6. Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
    7. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    8. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    9. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Wei & Wu, Yue & Huang, Xiang & Lu, Renzhi & Zhang, Hai-Tao, 2022. "A group sparse Bayesian learning algorithm for harmonic state estimation in power systems," Applied Energy, Elsevier, vol. 306(PB).
    2. Hongbo Cao & Faqiang Wang, 2023. "An Overview of Complex Instability Behaviors Induced by Nonlinearity of Power Electronic Systems with Memristive Load," Energies, MDPI, vol. 16(6), pages 1-25, March.
    3. Li, Yahui & Sun, Yuanyuan & Wang, Qingyan & Sun, Kaiqi & Li, Ke-Jun & Zhang, Yan, 2023. "Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    4. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    5. Xie, Xiangmin & Peng, Fei & Zhang, Yan, 2022. "A data-driven probabilistic harmonic power flow approach in power distribution systems with PV generations," Applied Energy, Elsevier, vol. 321(C).
    6. Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Jui-Sheng & Truong, Ngoc-Son, 2019. "Cloud forecasting system for monitoring and alerting of energy use by home appliances," Applied Energy, Elsevier, vol. 249(C), pages 166-177.
    2. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    3. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    4. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    6. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    7. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    8. Sungjin Lee & Soo Cho & Seo-Hoon Kim & Jonghun Kim & Suyong Chae & Hakgeun Jeong & Taeyeon Kim, 2020. "Deep Neural Network Approach for Prediction of Heating Energy Consumption in Old Houses," Energies, MDPI, vol. 14(1), pages 1-14, December.
    9. Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
    10. Sharif Shofirun Sharif Ali & Muhammad Rizal Razman & Azahan Awang & M. R. M. Asyraf & M. R. Ishak & R. A. Ilyas & Roderick John Lawrence, 2021. "Critical Determinants of Household Electricity Consumption in a Rapidly Growing City," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    11. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Chen, Yibo & Zhang, Fengyi & Berardi, Umberto, 2020. "Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms," Energy, Elsevier, vol. 211(C).
    13. Chou, Jui-Sheng & Truong, Dinh-Nhat & Kuo, Ching-Chiun, 2021. "Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning," Energy, Elsevier, vol. 224(C).
    14. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
    15. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    16. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    17. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    18. Arash Mohammadi Fallah & Ehsan Ghafourian & Ladan Shahzamani Sichani & Hossein Ghafourian & Behdad Arandian & Moncef L. Nehdi, 2023. "Novel Neural Network Optimized by Electrostatic Discharge Algorithm for Modification of Buildings Energy Performance," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    19. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    20. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s030626191931894x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.