IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007414.html
   My bibliography  Save this article

Optimal decarbonisation pathways for the Italian energy system: Modelling a long-term energy transition to achieve zero emission by 2050

Author

Listed:
  • Pastore, Lorenzo Mario
  • Groppi, Daniele
  • Feijoo, Felipe
  • Lo Basso, Gianluigi
  • Astiaso Garcia, Davide
  • de Santoli, Livio

Abstract

The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However, such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model, a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics, on-shore and off-shore wind power, and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes, enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix, however, both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed, as battery costs rise, fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.

Suggested Citation

  • Pastore, Lorenzo Mario & Groppi, Daniele & Feijoo, Felipe & Lo Basso, Gianluigi & Astiaso Garcia, Davide & de Santoli, Livio, 2024. "Optimal decarbonisation pathways for the Italian energy system: Modelling a long-term energy transition to achieve zero emission by 2050," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007414
    DOI: 10.1016/j.apenergy.2024.123358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.