Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115651
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
- Jan Christian Koj & Christina Wulf & Andrea Schreiber & Petra Zapp, 2017. "Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis," Energies, MDPI, vol. 10(7), pages 1-15, June.
- Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
- Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
- Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
- Parker, Nathan C. & Ogden, Joan M. & Fan, Yueyue, 2008. "The role of biomass in California's hydrogen economy," Energy Policy, Elsevier, vol. 36(10), pages 3925-3939, October.
- Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
- Matteo Muratori & Brian Bush & Chad Hunter & Marc W. Melaina, 2018. "Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †," Energies, MDPI, vol. 11(5), pages 1-14, May.
- Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
- Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
- Squadrito, G. & Nicita, A. & Maggio, G., 2021. "A size-dependent financial evaluation of green hydrogen-oxygen co-production," Renewable Energy, Elsevier, vol. 163(C), pages 2165-2177.
- Wenhui Zhao & Jibin Ma & Zhanyang Wang & Youting Li & Weishi Zhang, 2022. "Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
- Hurtubia, Byron & Sauma, Enzo, 2021. "Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity," Applied Energy, Elsevier, vol. 304(C).
- Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
- Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Fagbohungbe, Michael O. & Komolafe, Abiodun O. & Okere, Uchechukwu V., 2019. "Renewable hydrogen anaerobic fermentation technology: Problems and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Fankhauser, Samuel & Jotzo, Frank, 2017.
"Economic growth and development with low-carbon energy,"
LSE Research Online Documents on Economics
86850, London School of Economics and Political Science, LSE Library.
- Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," GRI Working Papers 267, Grantham Research Institute on Climate Change and the Environment.
- Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," CCEP Working Papers 1705, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
- Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
- Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
- Engstam, Linus & Janke, Leandro & Sundberg, Cecilia & Nordberg, Åke, 2025. "Optimising power-to-gas integration with wastewater treatment and biogas: A techno-economic assessment of CO2 and by-product utilisation," Applied Energy, Elsevier, vol. 377(PB).
- Son Kim & Kenichi Wada & Atsushi Kurosawa & Matthew Roberts, 2014. "Nuclear energy response in the EMF27 study," Climatic Change, Springer, vol. 123(3), pages 443-460, April.
- Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
- Gokul Iyer & Alicia Zhao & Adriana Bryant & John Bistline & Geoffrey Blanford & Ryna Cui & Allen A. Fawcett & Rachel Goldstein & Amanda Levin & Megan Mahajan & Haewon McJeon & Robbie Orvis & Nathan Hu, 2025. "A multi-model study to inform the United States’ 2035 NDC," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
- Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023.
"Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios,"
International Economics, Elsevier, vol. 176(C).
- Gondia Sokhna Seck & Emmanuel Hache & Vincent d'Herbemont & Mathis Guyot & Louis-Marie Malbec, 2023. "Hydrogen Development in Europe : Estimating Material Consumption in Net Zero Emissions Scenarios," Post-Print hal-04253822, HAL.
- Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018.
"Pathways toward zero-carbon electricity required for climate stabilization,"
Applied Energy, Elsevier, vol. 225(C), pages 884-901.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," Working Papers hal-01079837, HAL.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Celine, 2014. "Pathways toward zero-carbon electricity required for climate stabilization," Policy Research Working Paper Series 7075, The World Bank.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2017. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," IDB Publications (Working Papers) 8498, Inter-American Development Bank.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch & Alexander Pfeiffer, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Post-Print halshs-01804564, HAL.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," CIRED Working Papers hal-01079837, HAL.
More about this item
Keywords
Hydrogen fuel cell vehicles; Electricity production cost model; Electricity; Power system optimization; Electrolysis; Medium- and heavy-duty transportation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311491. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.