IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.00065.html
   My bibliography  Save this paper

FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models

Author

Listed:
  • Yuwei Yin
  • Yazheng Yang
  • Jian Yang
  • Qi Liu

Abstract

Financial risk prediction plays a crucial role in the financial sector. Machine learning methods have been widely applied for automatically detecting potential risks and thus saving the cost of labor. However, the development in this field is lagging behind in recent years by the following two facts: 1) the algorithms used are somewhat outdated, especially in the context of the fast advance of generative AI and large language models (LLMs); 2) the lack of a unified and open-sourced financial benchmark has impeded the related research for years. To tackle these issues, we propose FinPT and FinBench: the former is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models, and the latter is a set of high-quality datasets on financial risks such as default, fraud, and churn. In FinPT, we fill the financial tabular data into the pre-defined instruction template, obtain natural-language customer profiles by prompting LLMs, and fine-tune large foundation models with the profile text to make predictions. We demonstrate the effectiveness of the proposed FinPT by experimenting with a range of representative strong baselines on FinBench. The analytical studies further deepen the understanding of LLMs for financial risk prediction.

Suggested Citation

  • Yuwei Yin & Yazheng Yang & Jian Yang & Qi Liu, 2023. "FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models," Papers 2308.00065, arXiv.org.
  • Handle: RePEc:arx:papers:2308.00065
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.00065
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Kuo Chuen Lee & Chong Guan & Yinghui Yu & Qinxu Ding, 2024. "A Comprehensive Review of Generative AI in Finance," FinTech, MDPI, vol. 3(3), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Weike & Gao, Jiaxin & Chen, Yuntian & Wang, Shengwei, 2024. "Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning," Applied Energy, Elsevier, vol. 367(C).
    2. Anup Kumar & Santosh Kumar Shrivastav & Avinash K. Shrivastava & Rashmi Ranjan Panigrahi & Abbas Mardani & Fausto Cavallaro, 2023. "Sustainable Supply Chain Management, Performance Measurement, and Management: A Review," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    3. Afaq Khattak & Hamad Almujibah & Ahmed Elamary & Caroline Mongina Matara, 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    4. Naeem, Muhammad Abubakr & Karim, Sitara & Tiwari, Aviral Kumar, 2022. "Quantifying systemic risk in US industries using neural network quantile regression," Research in International Business and Finance, Elsevier, vol. 61(C).
    5. Kumar, Satish & Chavan, Meena & Pandey, Nitesh, 2023. "Journal of International Management: A 25-year review using bibliometric analysis," Journal of International Management, Elsevier, vol. 29(1).
    6. Chen, Xun-Qi & Ma, Chao-Qun & Ren, Yi-Shuai & Lei, Yu-Tian & Huynh, Ngoc Quang Anh & Narayan, Seema, 2023. "Explainable artificial intelligence in finance: A bibliometric review," Finance Research Letters, Elsevier, vol. 56(C).
    7. Mukherjee, Debmalya & Lim, Weng Marc & Kumar, Satish & Donthu, Naveen, 2022. "Guidelines for advancing theory and practice through bibliometric research," Journal of Business Research, Elsevier, vol. 148(C), pages 101-115.
    8. Heller, Yuval & Tubul, Itay, 2023. "Strategies in the repeated prisoner’s dilemma: A cluster analysis," MPRA Paper 117444, University Library of Munich, Germany.
    9. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.
    10. Alaminos, David & Guillén-Pujadas, Miguel & Vizuete-Luciano, Emili & Merigó, José María, 2024. "What is going on with studies on financial speculation? Evidence from a bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 429-445.
    11. Yankol-Schalck, Meryem, 2022. "The value of cross-data set analysis for automobile insurance fraud detection," Research in International Business and Finance, Elsevier, vol. 63(C).
    12. Pandey, Dharen Kumar & Hassan, M.Kabir & Kumari, Vineeta & Zaied, Younes Ben & Rai, Varun Kumar, 2024. "Mapping the landscape of FinTech in banking and finance: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 67(PA).
    13. Chaturvedi, Rijul & Verma, Sanjeev & Das, Ronnie & Dwivedi, Yogesh K., 2023. "Social companionship with artificial intelligence: Recent trends and future avenues," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    14. Peng He & Tong-Yuan Wang & Qi Shang & Jun Zhang & Henry Xu, 2024. "Knowledge mapping of e-commerce supply chain management: a bibliometric analysis," Electronic Commerce Research, Springer, vol. 24(3), pages 1889-1925, September.
    15. Antonio Molina-García & Julio Diéguez-Soto & M. Teresa Galache-Laza & Marta Campos-Valenzuela, 2023. "Financial literacy in SMEs: a bibliometric analysis and a systematic literature review of an emerging research field," Review of Managerial Science, Springer, vol. 17(3), pages 787-826, April.
    16. Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
    17. Archana Saxena & Rajesh Singh & Anita Gehlot & Shaik Vaseem Akram & Bhekisipho Twala & Aman Singh & Elisabeth Caro Montero & Neeraj Priyadarshi, 2022. "Technologies Empowered Environmental, Social, and Governance (ESG): An Industry 4.0 Landscape," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    18. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    19. Zhenglong Li & Vincent Tam & Kwan L. Yeung, 2024. "Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management," Papers 2402.00515, arXiv.org, revised Sep 2024.
    20. Jasman Tuyon & Okey Peter Onyia & Aidi Ahmi & Chia-Hsing Huang, 2023. "Sustainable financial services: reflection and future perspectives," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(4), pages 664-690, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.00065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.