IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3629-d577325.html
   My bibliography  Save this article

Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs

Author

Listed:
  • Dongkwon Han

    (Department of Energy and Mineral Resources, Faculty of Engineering, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea)

  • Sunil Kwon

    (Department of Energy and Mineral Resources, Faculty of Engineering, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea)

Abstract

Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need to simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep learning model. Furthermore, this study not only proposes the development process of a proxy model, but also verifies using field data for 1239 horizontal wells from the Montney shale formation in Alberta, Canada. A deep neural network (DNN) based on multi-layer perceptron was applied to predict the cumulative gas production as the dependent variable. The independent variable is largely divided into four types: well information, completion and hydraulic fracturing and production data. It was found that the prediction performance was better when using a principal component with a cumulative contribution of 85% using principal component analysis that extracts important information from multivariate data, and when predicting with a DNN model using 6 variables calculated through variable importance analysis. Hence, to develop a reliable deep learning model, sensitivity analysis of hyperparameters was performed to determine one-hot encoding, dropout, activation function, learning rate, hidden layer number and neuron number. As a result, the best prediction of the mean absolute percentage error of the cumulative gas production improved to at least 0.2% and up to 9.1%. The novel approach of this study can also be applied to other shale formations. Furthermore, a useful guide for economic analysis and future development plans of nearby reservoirs.

Suggested Citation

  • Dongkwon Han & Sunil Kwon, 2021. "Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs," Energies, MDPI, vol. 14(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3629-:d:577325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyoungsu Kim & Jonggeun Choe, 2019. "Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study," Energies, MDPI, vol. 12(2), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Weike & Gao, Jiaxin & Chen, Yuntian & Wang, Shengwei, 2024. "Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning," Applied Energy, Elsevier, vol. 367(C).
    2. Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
    3. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    4. Han, Sun & Zhenghao, Meng & Meilin, Li & Xiaohui, Yang & Xiaoxue, Wang, 2023. "Global supply sustainability assessment of critical metals for clean energy technology," Resources Policy, Elsevier, vol. 85(PB).
    5. Lixia Kang & Wei Guo & Xiaowei Zhang & Yuyang Liu & Zhaoyuan Shao, 2022. "Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China," Energies, MDPI, vol. 15(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaogui Zhou & Haiming Liu & Yintong Guo & Lei Wang & Zhenkun Hou & Peng Deng, 2019. "An Evaluation Method of Brittleness Characteristics of Shale Based on the Unloading Experiment," Energies, MDPI, vol. 12(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3629-:d:577325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.