IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p687-d1582201.html
   My bibliography  Save this article

Electric Vehicle Charging Demand Prediction Model Based on Spatiotemporal Attention Mechanism

Author

Listed:
  • Yang Chen

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Zeyang Tang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    State Grid Hubei Electric Power Research Institute, Wuhan 430077, China)

  • Yibo Cui

    (State Grid Hubei Electric Power Research Institute, Wuhan 430077, China)

  • Wei Rao

    (State Grid Hubei Electric Power Research Institute, Wuhan 430077, China)

  • Yiwen Li

    (State Grid Hubei Electric Power Research Institute, Wuhan 430077, China)

Abstract

The accurate estimation and prediction of charging demand are crucial for the planning of charging infrastructure, grid layout, and the efficient operation of charging networks. To address the shortcomings of existing methods in utilizing the spatial interdependencies among urban regions, this paper proposes a forecasting approach that integrates dynamic time warping (DTW) with a spatial–temporal attention graph convolutional neural network (ASTGCN). First, this method delves into the correlations between various regions within the target city, establishing intricate coupling relationships among them. Subsequently, the FastDTW algorithm is employed to construct an adjacency matrix, capturing the spatiotemporal correlation among different urban regions. Finally, the ASTGCN model is applied to predict the power load of each region, which can accurately capture the spatiotemporal characteristics of the power load. The experimental results indicate that the proposed model has a more powerful comprehensive ability to capture spatiotemporal relationships and improve accuracy and stability in different prediction steps.

Suggested Citation

  • Yang Chen & Zeyang Tang & Yibo Cui & Wei Rao & Yiwen Li, 2025. "Electric Vehicle Charging Demand Prediction Model Based on Spatiotemporal Attention Mechanism," Energies, MDPI, vol. 18(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:687-:d:1582201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    2. Zhuang, Yingrui & Cheng, Lin & Qi, Ning & Wang, Xinyi & Chen, Yue, 2025. "Real-time hosting capacity assessment for electric vehicles: A sequential forecast-then-optimize method," Applied Energy, Elsevier, vol. 380(C).
    3. Zhu, Nanyang & Wang, Ying & Yuan, Kun & Yan, Jiahao & Li, Yaping & Zhang, Kaifeng, 2024. "GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations," Applied Energy, Elsevier, vol. 364(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    2. Weixiong Wu & Rui Gao & Peng Wu & Chen Yuan & Xiaoling Xia & Renfeng Liu & Yifei Wang, 2024. "Enhanced Ultra-Short-Term PV Forecasting Using Sky Imagers: Integrating MCR and Cloud Cover Estimation," Energies, MDPI, vol. 18(1), pages 1-17, December.
    3. Yanan Xue & Jinliang Yin & Xinhao Hou, 2024. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning," Energies, MDPI, vol. 17(13), pages 1-25, July.
    4. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    5. Huachun Han & Huiyu Miu & Shukang Lv & Xiaodong Yuan & Yi Pan & Fei Zeng, 2024. "Fast Charging Guidance and Pricing Strategy Considering Different Types of Electric Vehicle Users’ Willingness to Charge," Energies, MDPI, vol. 17(18), pages 1-21, September.
    6. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    7. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    8. Nitin Kumar Singh & Masaaki Nagahara, 2024. "LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies, MDPI, vol. 17(17), pages 1-32, September.
    9. Dong, Xianzhou & Luo, Yongqiang & Yuan, Shuo & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2025. "Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information," Applied Energy, Elsevier, vol. 377(PB).
    10. Despoina Kothona & Aggelos S. Bouhouras, 2022. "A Two-Stage EV Charging Planning and Network Reconfiguration Methodology towards Power Loss Minimization in Low and Medium Voltage Distribution Networks," Energies, MDPI, vol. 15(10), pages 1-17, May.
    11. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    12. Ouyang, Xu & Xu, Min, 2022. "Promoting green transportation under the belt and Road Initiative: Locating charging stations considering electric vehicle users’ travel behavior," Transport Policy, Elsevier, vol. 116(C), pages 58-80.
    13. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    14. Alejandro Garcia-Basurto & Angel Perez-Cruz & Aurelio Dominguez-Gonzalez & Juan J. Saucedo-Dorantes, 2024. "Modeling and Prediction of Carbon Monoxide during the Start-Up in ICE through VARX Regression," Energies, MDPI, vol. 17(11), pages 1-21, May.
    15. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    16. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    17. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    18. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    19. Qingyuan Yan & Zhaoyi Wang & Ling Xing & Chenchen Zhu, 2024. "Optimal Economic Analysis of Battery Energy Storage System Integrated with Electric Vehicles for Voltage Regulation in Photovoltaics Connected Distribution System," Sustainability, MDPI, vol. 16(19), pages 1-44, September.
    20. Ruisheng Wang & Zhong Chen & Qiang Xing & Ziqi Zhang & Tian Zhang, 2022. "A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station," Sustainability, MDPI, vol. 14(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:687-:d:1582201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.