IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51245-5.html
   My bibliography  Save this article

A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting

Author

Listed:
  • Yawei Wang

    (The Hong Kong University of Science and Technology (Guangzhou)
    Marine Engineering College, Dalian Maritime University)

  • Hengxu Du

    (Marine Engineering College, Dalian Maritime University)

  • Hengyi Yang

    (Marine Engineering College, Dalian Maritime University)

  • Ziyue Xi

    (Marine Engineering College, Dalian Maritime University)

  • Cong Zhao

    (Marine Engineering College, Dalian Maritime University)

  • Zian Qian

    (Marine Engineering College, Dalian Maritime University)

  • Xinyuan Chuai

    (Xidian University)

  • Xuzhang Peng

    (The Hong Kong University of Science and Technology (Guangzhou))

  • Hongyong Yu

    (Marine Engineering College, Dalian Maritime University)

  • Yu Zhang

    (Marine Engineering College, Dalian Maritime University)

  • Xin Li

    (Xidian University)

  • Guobiao Hu

    (The Hong Kong University of Science and Technology (Guangzhou))

  • Hao Wang

    (Marine Engineering College, Dalian Maritime University)

  • Minyi Xu

    (Marine Engineering College, Dalian Maritime University)

Abstract

In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications. This work presents a rolling mode triboelectric nanogenerator that utilizes multi-tunnel grating electrodes and the opposite-charge-enhancement mechanism to harvest wave energy efficiently. The device achieves significant instantaneous and root mean square power density of 185.4 W/(m3·Hz) and 10.92 W/(m3·Hz), respectively. By utilizing stacked devices and an exclusively designed power management module, a self-powered ocean sensing system including computing and long-range wireless communication (0.8 km) capabilities was developed. Laboratory and in-situ ocean tests were conducted to assess and validate the system. This work offers a potential solution for the challenging deployment of marine self-powered sensing nodes.

Suggested Citation

  • Yawei Wang & Hengxu Du & Hengyi Yang & Ziyue Xi & Cong Zhao & Zian Qian & Xinyuan Chuai & Xuzhang Peng & Hongyong Yu & Yu Zhang & Xin Li & Guobiao Hu & Hao Wang & Minyi Xu, 2024. "A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51245-5
    DOI: 10.1038/s41467-024-51245-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51245-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51245-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    2. Yunlong Zi & Jie Wang & Sihong Wang & Shengming Li & Zhen Wen & Hengyu Guo & Zhong Lin Wang, 2016. "Effective energy storage from a triboelectric nanogenerator," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    3. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Hao Wu & Steven Wang & Zuankai Wang & Yunlong Zi, 2021. "Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    4. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yi Li & Yi Luo & Song Xiao & Cheng Zhang & Cheng Pan & Fuping Zeng & Zhaolun Cui & Bangdou Huang & Ju Tang & Tao Shao & Xiaoxing Zhang & Jiaqing Xiong & Zhong Lin Wang, 2024. "Visualization and standardized quantification of surface charge density for triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Zehua Peng & Jihong Shi & Xiao Xiao & Ying Hong & Xuemu Li & Weiwei Zhang & Yongliang Cheng & Zuankai Wang & Wen Jung Li & Jun Chen & Michael K. H. Leung & Zhengbao Yang, 2022. "Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
    10. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Zhao, Huai & Ouyang, Huajiang, 2021. "A capsule-structured triboelectric energy harvester with stick-slip vibration and vibro-impact," Energy, Elsevier, vol. 235(C).
    12. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    13. Chaojie Chen & Shilong Zhao & Caofeng Pan & Yunlong Zi & Fangcheng Wang & Cheng Yang & Zhong Lin Wang, 2022. "A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Hang Zhang & Sankaran Sundaresan & Michael A. Webb, 2024. "Thermodynamic driving forces in contact electrification between polymeric materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Chen, Keyu & Fang, Shitong & Lai, Zhihui & Cao, Junyi & Liao, Wei-Hsin, 2024. "A plucking rotational energy harvester with tapered thickness and auxetic structures for increasing power output," Applied Energy, Elsevier, vol. 357(C).
    17. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    18. Donghoon Lee & You-Yeob Song & Angyin Wu & Jia Li & Jeonghun Yun & Dong-Hwa Seo & Seok Woo Lee, 2024. "Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Wang, Jiaxin & Jiang, Ziyuan & Sun, Wenpeng & Xu, Xueping & Han, Qinkai & Chu, Fulei, 2022. "Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy," Applied Energy, Elsevier, vol. 308(C).
    20. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51245-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.