IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016891.html
   My bibliography  Save this article

Battery health-considered energy management strategy for a dual-motor two-speed battery electric vehicle based on a hybrid soft actor-critic algorithm with memory function

Author

Listed:
  • Wu, Changcheng
  • Peng, Jiankun
  • Chen, Jun
  • He, Hongwen
  • Pi, Dawei
  • Wang, Zhongwei
  • Ma, Chunye

Abstract

Energy management strategies (EMSs) ease mileage anxiety and improve the health performance of battery electric vehicles (BEVs). This study proposes a soft actor-critic (SAC)-based EMS for dual-motor two-speed BEV to minimize electrical energy consumption and battery capacity losses. In addition, two optimization tricks are employed to optimize the original SAC. The linear mapping trick is integrated into the actor-network of SAC to enable agents to search for optimal EMS in a discrete (driving mode)-continuous (torque distribution) hybrid action space. The SAC-based EMS is modeled as a partially observable Markov decision process (POMDP) to obtain more information about the real state of the environment. Based on this, another optimization trick, the long short-term memory (LSTM) network, is integrated into the actor and critic of SAC to make full use of both historical and current environmental information. Simulation results show that the proposed method learns the optimal EMS, its converged episodes are shortened to the 97th, the health performance of the battery is the closest to the dynamic programming (DP)-based EMS, and maintains battery operating at a range of 30–40°C. In addition, the proposed EMS has the best adaptability in test cycles, reaching 99.42% and 99.29% of DP-based EMS, respectively.

Suggested Citation

  • Wu, Changcheng & Peng, Jiankun & Chen, Jun & He, Hongwen & Pi, Dawei & Wang, Zhongwei & Ma, Chunye, 2024. "Battery health-considered energy management strategy for a dual-motor two-speed battery electric vehicle based on a hybrid soft actor-critic algorithm with memory function," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016891
    DOI: 10.1016/j.apenergy.2024.124306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.