IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9948-d1521187.html
   My bibliography  Save this article

Multi-Objective Optimal Integration of Distributed Generators into Distribution Networks Incorporated with Plug-In Electric Vehicles Using Walrus Optimization Algorithm

Author

Listed:
  • Mohammed Goda Eisa

    (Electrical Power and Machines Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Mohammed A. Farahat

    (Electrical Power and Machines Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Wael Abdelfattah

    (Electrical Power and Machines Engineering Department, The Higher Institute of Engineering, El-Shorouk Academy, Cairo 11837, Egypt)

  • Mohammed Elsayed Lotfy

    (Electrical Power and Machines Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
    Department of Electrical and Electronics Engineering, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan)

Abstract

The increasing adoption of plug-in electric vehicles (PEVs) leads to negative impacts on distribution network efficiency due to the extra load added to the system. To overcome this problem, this manuscript aims to optimally integrate distributed generators (DGs) in radial distribution networks (RDNs), while including uncoordinated charging of PEVs added to the basic daily load curve with different load models. The main objectives are minimizing the network’s daily energy losses, improving the daily voltage profile, and enhancing voltage stability considering various constraints like power balance, buses’ voltages, and line flow. These objectives are combined using weighting factors to formulate a weighted sum multi-objective function (MOF). A very recent metaheuristic approach, namely the Walrus optimization algorithm (WO), is addressed to identify the DGs’ best locations and sizes that achieve the lowest value of MOF, without violating different constraints. The proposed optimization model along with a repetitive backward/forward load flow (BFLF) method are simulated using MATLAB 2016a software. The WO-based optimization model is applied to IEEE 33-bus, 69-bus, and a real system in El-Shourok City-district number 8 (ShC-D8), Egypt. The simulation results show that the proposed optimization method significantly enhanced the performance of RDNs incorporated with PEVs in all aspects. Moreover, the proposed WO approach proved its superiority and efficiency in getting high-quality solutions for DGs’ locations and ratings, compared to other programmed algorithms.

Suggested Citation

  • Mohammed Goda Eisa & Mohammed A. Farahat & Wael Abdelfattah & Mohammed Elsayed Lotfy, 2024. "Multi-Objective Optimal Integration of Distributed Generators into Distribution Networks Incorporated with Plug-In Electric Vehicles Using Walrus Optimization Algorithm," Sustainability, MDPI, vol. 16(22), pages 1-37, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9948-:d:1521187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    2. Umair Hussan & Huaizhi Wang & Muhammad Ahsan Ayub & Hamna Rasheed & Muhammad Asghar Majeed & Jianchun Peng & Hui Jiang, 2024. "Decentralized Stochastic Recursive Gradient Method for Fully Decentralized OPF in Multi-Area Power Systems," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
    3. Sankar, Matta Mani & Chatterjee, Kalyan, 2023. "A posteriori multiobjective approach for techno-economic allocation of PV and BES units in a distribution system hosting PHEVs," Applied Energy, Elsevier, vol. 351(C).
    4. Thamer Alquthami & Abdullah Alsubaie & Mohannad Alkhraijah & Khalid Alqahtani & Saad Alshahrani & Murad Anwar, 2022. "Investigating the Impact of Electric Vehicles Demand on the Distribution Network," Energies, MDPI, vol. 15(3), pages 1-18, February.
    5. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jiawei & Mu, Rui & Li, Bin & Li, Ye & Zhou, Bohao & Xie, Zhongrun & Wang, Wenbo, 2024. "Applicability boundary calculation for directional current protection in distribution networks with accessed PV power sources," Applied Energy, Elsevier, vol. 370(C).
    2. Apostolos Vavouris & Benjamin Garside & Lina Stankovic & Vladimir Stankovic, 2022. "Low-Frequency Non-Intrusive Load Monitoring of Electric Vehicles in Houses with Solar Generation: Generalisability and Transferability," Energies, MDPI, vol. 15(6), pages 1-27, March.
    3. Shuxin Liu & Jing Xu & Chaojian Xing & Yang Liu & Ersheng Tian & Jia Cui & Junzhu Wei, 2023. "Study on Dynamic Pricing Strategy for Industrial Power Users Considering Demand Response Differences in Master–Slave Game," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    4. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    5. Mateusz Malarczyk & Grzegorz Kaczmarczyk & Jaroslaw Szrek & Marcin Kaminski, 2023. "Internet of Robotic Things (IoRT) and Metaheuristic Optimization Techniques Applied for Wheel-Legged Robot," Future Internet, MDPI, vol. 15(9), pages 1-19, September.
    6. Mohammed Qasim Taha & Sefer Kurnaz, 2023. "Droop Control Optimization for Improved Power Sharing in AC Islanded Microgrids Based on Centripetal Force Gravity Search Algorithm," Energies, MDPI, vol. 16(24), pages 1-20, December.
    7. Zhe Wang & Jiali Duan & Fengzhang Luo & Xuan Wu, 2024. "Two-Stage Optimal Scheduling for Urban Snow-Shaped Distribution Network Based on Coordination of Source-Network-Load-Storage," Energies, MDPI, vol. 17(14), pages 1-22, July.
    8. Seppo Borenius & Petri Tuomainen & Jyri Tompuri & Jesse Mansikkamäki & Matti Lehtonen & Heikki Hämmäinen & Raimo Kantola, 2022. "Scenarios on the Impact of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 15(13), pages 1-30, June.
    9. Umar Draz & Tariq Ali & Sana Yasin & Muhammad Hasanain Chaudary & Muhammad Ayaz & El-Hadi M. Aggoune & Isha Yasin, 2024. "Hybridization and Optimization of Bio and Nature-Inspired Metaheuristic Techniques of Beacon Nodes Scheduling for Localization in Underwater IoT Networks," Mathematics, MDPI, vol. 12(22), pages 1-29, November.
    10. Muhammad Usman Riaz & Suheel Abdullah Malik & Amil Daraz & Hasan Alrajhi & Ahmed N. M. Alahmadi & Abdul Rahman Afzal, 2024. "Advanced Energy Management in a Sustainable Integrated Hybrid Power Network Using a Computational Intelligence Control Strategy," Energies, MDPI, vol. 17(20), pages 1-53, October.
    11. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9948-:d:1521187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.