IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923011364.html
   My bibliography  Save this article

Performance analysis of PEMEC with non-uniform deformation based on a comprehensive numerical framework coupling image recognition and CFD

Author

Listed:
  • Fu, J.L.
  • Qu, Z.G.
  • Zhang, J.F.
  • Zhang, G.B.

Abstract

Proton exchange membrane electrolysis cell (PEMEC) is widely regarded as an efficient device for producing green hydrogen. Proper clamping pressure during cell assembly can reduce contact resistance while ensuring sealing and safety. Meanwhile, the clamping pressure will cause deformation of the cell components, resulting in increasing mass transfer resistance. However, the evolution law of multi-physical parameters under different clamping pressures has not been fully studied. In this study, a comprehensive numerical framework is proposed for non-uniform deformation and performance analysis of PEMEC. The framework includes three parts: non-uniform deformation model, data transmission based on image recognition, and three-dimensional (3D) multi-phase and multi-physical model. The effects of cell component non-uniform deformation on heat and mass transfer, and electrochemical characteristics are studied. The purity of hydrogen production is also fully taken into consideration. Results show that high clamping pressure causes severe deformation of liquid and gas diffusion layers under the land and a significant decrease in porosity and permeability. In addition, the accumulation of oxygen in the flow channel will weaken the liquid water supply rate and form a high oxygen covered region on the membrane. The current density inhomogeneity in this region will increase significantly with clamping pressure. Although high clamping pressure can obtain low contact resistance and high output hydrogen molar fraction, it also increases mass transfer resistance. An appropriate clamping pressure of 3 MPa is recommended with a lower cell voltage of 2.12 V at 2A/cm2 after considering the physical and chemical properties. The present study can provide helpful guidelines on the design of large-scale electrolyzers.

Suggested Citation

  • Fu, J.L. & Qu, Z.G. & Zhang, J.F. & Zhang, G.B., 2023. "Performance analysis of PEMEC with non-uniform deformation based on a comprehensive numerical framework coupling image recognition and CFD," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011364
    DOI: 10.1016/j.apenergy.2023.121772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    2. Zizhe Dong & Yuwen Liu & Yanzhou Qin, 2022. "Coupled FEM and CFD Modeling of Structure Deformation and Performance of PEMFC Considering the Effects of Membrane Water Content," Energies, MDPI, vol. 15(15), pages 1-19, July.
    3. Wang, Zhiming & Wang, Xueye & Chen, Zhichao & Liao, Zhirong & Xu, Chao & Du, Xiaoze, 2021. "Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling," Renewable Energy, Elsevier, vol. 180(C), pages 1333-1343.
    4. Wu, Lizhen & An, Liang & Jiao, Daokuan & Xu, Yifan & Zhang, Guobin & Jiao, Kui, 2022. "Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell," Applied Energy, Elsevier, vol. 323(C).
    5. Christopher Kanan & Garrison W Cottrell, 2012. "Color-to-Grayscale: Does the Method Matter in Image Recognition?," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    2. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    3. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    4. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    5. Nie, Wen & Jiang, Chenwang & Sun, Ning & Guo, Lidian & Xue, Qianqian & Liu, Qiang & Liu, Chengyi & Cha, Xingpeng & Yi, Shixing, 2023. "Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines," Energy, Elsevier, vol. 278(PA).
    6. Wang, Jian & Li, Xin & Zhang, Zhenggui & Li, Xiaofei & Han, Yingchun & Feng, Lu & Yang, Beifang & Wang, Guoping & Lei, Yaping & Xiong, Shiwu & Xin, Minghua & Wang, Zhanbiao & Li, Yabing, 2022. "Application of image technology to simulate optimal frequency of automatic collection of volumetric soil water content data," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Wang, Bowen & Ni, Meng & Zhang, Shiye & Liu, Zhi & Jiang, Shangfeng & Zhang, Longhai & Zhou, Feikun & Jiao, Kui, 2023. "Two-phase analytical modeling and intelligence parameter estimation of proton exchange membrane electrolyzer for hydrogen production," Renewable Energy, Elsevier, vol. 211(C), pages 202-213.
    8. Katherine L. Hermann & Shridhar R. Singh & Isabelle A. Rosenthal & Dimitrios Pantazis & Bevil R. Conway, 2022. "Temporal dynamics of the neural representation of hue and luminance polarity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Homod, Raad Z. & Togun, Hussein & Ateeq, Adnan A. & Al-Mousawi, Fadhel Noraldeen & Yaseen, Zaher Mundher & Al-Kouz, Wael & Hussein, Ahmed Kadhim & Alawi, Omer A. & Goodarzi, Marjan & Ahmadi, Goodarz, 2022. "An innovative clustering technique to generate hybrid modeling of cooling coils for energy analysis: A case study for control performance in HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
    11. Zhiming Zhang & Sai Wu & Kunpeng Li & Jiaming Zhou & Caizhi Zhang & Guofeng Wang & Tong Zhang, 2022. "An Effective Force-Temperature-Humidity Coupled Modeling for PEMFC Performance Parameter Matching by Using CFD and FEA Co-Simulation," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    12. Lin, Rui & Lu, Ying & Xu, Ji & Huo, Jiawei & Cai, Xin, 2022. "Investigation on performance of proton exchange membrane electrolyzer with different flow field structures," Applied Energy, Elsevier, vol. 326(C).
    13. Kumar, S. Shiva & Ni, Aleksey & Himabindu, V. & Lim, Hankwon, 2023. "Experimental and simulation of PEM water electrolyser with Pd/PN-CNPs electrodes for hydrogen evolution reaction: Performance assessment and validation," Applied Energy, Elsevier, vol. 348(C).
    14. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.