IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3428-d1433559.html
   My bibliography  Save this article

Numerical Investigation of Flow Field Distributions and Water and Thermal Management for a Proton Exchange Membrane Electrolysis Cell

Author

Listed:
  • Dan Shao

    (Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou 511447, China)

  • Liangyong Hu

    (Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou 511447, China)

  • Guoqing Zhang

    (School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China)

  • Kaicheng Hu

    (School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China)

  • Jiangyun Zhang

    (School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China)

  • Jun Liu

    (Guangdong Greenway Technology Co., Ltd., Dongguan 523000, China)

  • Kang Peng

    (Guangdong Greenway Technology Co., Ltd., Dongguan 523000, China)

  • Liqin Jiang

    (Guangdong Zhuhai Supervision Testing Institute of Quality and Metrology, Zhuhai 519000, China)

  • Wenzhao Jiang

    (Guangdong Zhuhai Supervision Testing Institute of Quality and Metrology, Zhuhai 519000, China)

  • Yuliang Wen

    (Dongguan Guixiang Insulation Material Co., Ltd., Dongguan 523861, China)

Abstract

The proton exchange membrane electrolysis cell (PEMEC) has attracted considerable attention for large-scale and efficient hydrogen production because of its high current density, high hydrogen purity and fast dynamic response. Flow field distributions and water and thermal management characteristics of a PEMEC are vital for electrolytic cell structure and the determination of operating condition. A three-dimensional, non-isothermal, electrochemical model of a PEMEC was established in this manuscript. The flow field distribution and water and thermal management of the PEMEC are discussed. The corresponding results showed that the pressure of the flow channel decreased diagonally from the inlet to the outlet, and the pressure and velocity distribution exhibited a downward opening shape of a parabola. At the same inlet flow rate, when the voltage was 1.6 V, the oxygen generation rate was 15.74 mol/(cm 2 ·s), and when the voltage was 2.2 V, the oxygen generation rate was 332.05 mol/(cm 2 ·s); due to the change in the oxygen production rate, the pressure difference at 2.2 V was 2.5 times than that at 1.6 V. When the stoichiometric number was less than two, the average temperature of the catalyst layer (CL) decreased rapidly with the increase in the water flow rate. When the voltage decreased to 2.1 V, the current density came to the highest value when the stoichiometric number was 0.7, then the current density decreased with an increase in the stoichiometric number. When stoichiometric numbers were higher than five, the surface temperature and current density remained basically stable with the increase in the water flow rate, and the water and thermal management and electrolysis characteristics performed better. The research results could optimize the water supply of electrolysis cells. According to the velocity distribution law of the flow field, the water and thermal management performance of the PEMEC could be estimated, further promoting safety and reliability.

Suggested Citation

  • Dan Shao & Liangyong Hu & Guoqing Zhang & Kaicheng Hu & Jiangyun Zhang & Jun Liu & Kang Peng & Liqin Jiang & Wenzhao Jiang & Yuliang Wen, 2024. "Numerical Investigation of Flow Field Distributions and Water and Thermal Management for a Proton Exchange Membrane Electrolysis Cell," Energies, MDPI, vol. 17(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3428-:d:1433559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    2. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    3. Homod, Raad Z. & Togun, Hussein & Ateeq, Adnan A. & Al-Mousawi, Fadhel Noraldeen & Yaseen, Zaher Mundher & Al-Kouz, Wael & Hussein, Ahmed Kadhim & Alawi, Omer A. & Goodarzi, Marjan & Ahmadi, Goodarz, 2022. "An innovative clustering technique to generate hybrid modeling of cooling coils for energy analysis: A case study for control performance in HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Xu, Guanxin & Wu, Yan & Tang, Shuo & Wang, Yufei & Yu, Xinhai & Ma, Mingyan, 2024. "Optimal design of hydrogen production processing coupling alkaline and proton exchange membrane electrolyzers," Energy, Elsevier, vol. 302(C).
    5. Nie, Wen & Jiang, Chenwang & Sun, Ning & Guo, Lidian & Xue, Qianqian & Liu, Qiang & Liu, Chengyi & Cha, Xingpeng & Yi, Shixing, 2023. "Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines," Energy, Elsevier, vol. 278(PA).
    6. Fu, J.L. & Qu, Z.G. & Zhang, J.F. & Zhang, G.B., 2023. "Performance analysis of PEMEC with non-uniform deformation based on a comprehensive numerical framework coupling image recognition and CFD," Applied Energy, Elsevier, vol. 350(C).
    7. Mohammad Alobeid & Selahattin Çelik & Hasan Ozcan & Bahman Amini Horri, 2024. "Multi-Dimensional Modelling of Bioinspired Flow Channels Based on Plant Leaves for PEM Electrolyser," Energies, MDPI, vol. 17(17), pages 1-20, September.
    8. Lin, Rui & Lu, Ying & Xu, Ji & Huo, Jiawei & Cai, Xin, 2022. "Investigation on performance of proton exchange membrane electrolyzer with different flow field structures," Applied Energy, Elsevier, vol. 326(C).
    9. Kumar, S. Shiva & Ni, Aleksey & Himabindu, V. & Lim, Hankwon, 2023. "Experimental and simulation of PEM water electrolyser with Pd/PN-CNPs electrodes for hydrogen evolution reaction: Performance assessment and validation," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3428-:d:1433559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.