IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924020191.html
   My bibliography  Save this article

Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage

Author

Listed:
  • Sun, Mingjia
  • Zhang, Yumeng
  • Liu, Luyao
  • Nian, Xingheng
  • Zhang, Hanfei
  • Duan, Liqiang

Abstract

The production of hydrogen by proton exchange membrane water electrolyzers (PEMWEs) integrated with renewable energy sources is receiving significant interest for its environmental benefits. While, powered by intermittent renewable electricity, the frequent start-up/shut-down events put forward an urgent need for PEMWEs to have rapid start-up capabilities and will significantly accelerate the degradation of electrolyzer, increasing the failure risk and cutting down the cost-effectiveness. In this paper, a novel hydrogen production and hot standby dual-mode system aiming at fast start-up ability as well as slow degradation is proposed. Thermal energy storage based on phase change material (PCM) is used to manage the heat of the electrolyzer by recovering the heat produced during hydrogen production mode and utilizing it to maintain the electrolyzer temperature during hot standby mode. The operating strategy has been given and the dynamic performance has been analyzed. Results indicated that an electrolyzer with a capacity of 397.2 Nm3/h can cut start-up time by up to 785 s (from 1067 to 282 s). In the extreme situation, from 0 A to the rated current of 320 A, the start-up time of PEMWE is reduced from 118 s to 88 s, and the voltage overshoot is reduced by 23.91 % when compared to that of a cold start. Moreover, through waste heat recovery and utilization, the system efficiency can be improved. The system employing PCM with a higher melting point (64 °C) achieves an efficiency of 58.86 %, which is 1 % and 2.2 % greater than the systems using PCM melting at 45 °C and without heat storage, respectively.

Suggested Citation

  • Sun, Mingjia & Zhang, Yumeng & Liu, Luyao & Nian, Xingheng & Zhang, Hanfei & Duan, Liqiang, 2025. "Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020191
    DOI: 10.1016/j.apenergy.2024.124636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chennaif, Mohammed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2021. "Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage," Energy, Elsevier, vol. 227(C).
    2. Vincenzo Liso & Giorgio Savoia & Samuel Simon Araya & Giovanni Cinti & Søren Knudsen Kær, 2018. "Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures," Energies, MDPI, vol. 11(12), pages 1-18, November.
    3. Wang, Zhiming & Wang, Xueye & Chen, Zhichao & Liao, Zhirong & Xu, Chao & Du, Xiaoze, 2021. "Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling," Renewable Energy, Elsevier, vol. 180(C), pages 1333-1343.
    4. Gu, Xufei & Ying, Zhi & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2023. "Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production," Renewable Energy, Elsevier, vol. 209(C), pages 53-62.
    5. Kakran, Shubham & Sidhu, Arpit & Kumar, Ashish & Ben Youssef, Adel & Lohan, Sheenam, 2023. "Hydrogen energy in BRICS-US: A whirl succeeding fuel treasure," Applied Energy, Elsevier, vol. 334(C).
    6. Papakonstantinou, Georgios & Algara-Siller, Gerardo & Teschner, Detre & Vidaković-Koch, Tanja & Schlögl, Robert & Sundmacher, Kai, 2020. "Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions," Applied Energy, Elsevier, vol. 280(C).
    7. Marocco, Paolo & Ferrero, Domenico & Lanzini, Andrea & Santarelli, Massimo, 2019. "Benefits from heat pipe integration in H2/H2O fed SOFC systems," Applied Energy, Elsevier, vol. 241(C), pages 472-482.
    8. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    9. Cao, Ruifeng & Li, Weiqiang & Chen, Ziqi & Li, Yawei, 2024. "Development and assessment of a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer," Energy, Elsevier, vol. 294(C).
    10. Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
    11. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    12. Dong, Xiaofei & Zhao, Hongxia & Li, Hailong & Fucucci, Giacomo & Zheng, Qingrong & Zhao, Honghua & Pu, Jinhuan, 2024. "A novel design of a metal hydride reactor integrated with phase change material for H2 storage," Applied Energy, Elsevier, vol. 367(C).
    13. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    14. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    2. Tang, Yinglun & Su, Shangchun & Niu, Xiaoxuan & Song, Zhehui & Li, Wenjia, 2024. "A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell," Renewable Energy, Elsevier, vol. 237(PC).
    3. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    4. Zhu, Yanxi & Zhang, Yixiang & Bin, Shiyu & Chen, Zeyi & Zhang, Fanhang & Gong, Shihao & Xia, Yan & Duan, Xiongbo, 2024. "Effects of key design and operating parameters on the performance of the PEM water electrolysis for hydrogen production," Renewable Energy, Elsevier, vol. 235(C).
    5. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    6. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    7. Arias, Ignacio & Battisti, Felipe G. & Romero-Ramos, J.A. & Pérez, Manuel & Valenzuela, Loreto & Cardemil, José & Escobar, Rodrigo, 2024. "Assessing system-level synergies between photovoltaic and proton exchange membrane electrolyzers for solar-powered hydrogen production," Applied Energy, Elsevier, vol. 368(C).
    8. Wang, Bowen & Ni, Meng & Zhang, Shiye & Liu, Zhi & Jiang, Shangfeng & Zhang, Longhai & Zhou, Feikun & Jiao, Kui, 2023. "Two-phase analytical modeling and intelligence parameter estimation of proton exchange membrane electrolyzer for hydrogen production," Renewable Energy, Elsevier, vol. 211(C), pages 202-213.
    9. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    10. Feriel Mustapha & Damien Guilbert & Mohammed El-Ganaoui, 2022. "Investigation of Electrical and Thermal Performance of a Commercial PEM Electrolyzer under Dynamic Solicitations," Clean Technol., MDPI, vol. 4(4), pages 1-11, September.
    11. Mohamed Koundi & Hassan El Fadil & Zakaria EL Idrissi & Abdellah Lassioui & Abdessamad Intidam & Tasnime Bouanou & Soukaina Nady & Aziz Rachid, 2023. "Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches," Clean Technol., MDPI, vol. 5(2), pages 1-38, April.
    12. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    13. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    14. Nina Almasifar & Tülay Özdemir Canbolat & Milad Akhavan & Roberto Alonso González-Lezcano, 2021. "Proposing a New Methodology for Monument Conservation “SCOPE MANAGEMENT” by the Use of an Analytic Hierarchy Process Project Management Institute System and the ICOMOS Burra Charter," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    15. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    16. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    17. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    18. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    19. Lim, Chulmin & Rowsell, Joe & Kim, Seongcheol, 2023. "Exploring the killer domains to create new value: A Comparative case study of Canadian and Korean telcos," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277998, International Telecommunications Society (ITS).
    20. Kariuki, Boniface Wainaina & Emam, Mohamed & Ookawara, Shinichi & Hassan, Hamdy, 2024. "New hybrid system of PV/T, solar collectors, PEM electrolyzer, and HDH for hydrogen and freshwater production: Seasonal performance investigation," Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.